Не только вич. как устроены вирусы?

Миссия: уничтожить

Основная сложность в лечении вирусных заболеваний заключается в том, что они используют естественные функции клеток-мишеней для своего размножения, поэтому ученым зачастую оказывается не так-то просто придумать препарат, который будет токсичен для вируса и безопасен для самой клетки. Если такой безопасности достичь не удастся, лекарство будет иметь слишком много побочных эффектов, повреждающих сам организм, что окажется нецелесообразно для использования.

Сравнение жизненных циклов ВИЧ и вируса гриппа. Если первый  использует обратную транскрипцию и живет в клетках иммунной стистемы, вирион второго, проникая в  эпительные клетки  дыхательных путей целиком — а именно там  он и обитает — распадается уже внутри клетки, а репликация вирусной РНК происходит в ядре с помощью вирусных полимераз PA, PB1 и PB2 путем комплементарного копирования. 

По принципу действия противовирусные препараты подразделяются на две группы: стимулирующие иммунную систему атаковать вирусы (например, за счет индукции синтеза белков-интерферонов) и атакующие вирусы напрямую. Препараты второй группы различаются по этапу жизненного цикла вируса, на котором они активны: это препараты, препятствующие проникновению вируса в клетку, препятствующие размножению вируса внутри клетки и препятствующие выходу копий вируса из клетки.

Чтобы помешать проникновению вируса, препарат должен заблокировать рецептор на клетке, с которым связывается вирусная частица. Так работает, например, ибализумаб — зарегистрированный в США новый препарат против ВИЧ, о котором мы недавно писали. 

Такие противовирусные препараты, как уже давно известный ацикловир (им лечат инфекции, вызванные простым вирусом герпеса) или ламивудин (активен против ВИЧ и гепатита В), представляют собой синтетические аналоги нуклеозидов — «букв», из которых состоят нуклеиновые кислоты. Если эти модифицированные, неправильные нуклеозиды попадают в клетку, вирусный геном, в который они оказались встроены, становится непригоден для дальнейшего распространения вируса. 

Еще один класс противовирусных препаратов блокирует ферменты, необходимые для создания и модификаций белков вируса. Такие лекарства называют протеазными ингибиторами. 

Современная классификация

Современная классификация вирусов объединяет классификацию ICTV и классификацию по Балтимору.

В настоящее время для распределения вирусов по таксонам используется множество характеристик, доступных для измерения: морфология, физические и физико-химические свойства вирионов, тип геномной нуклеиновой кислоты, размер генома, количество нитей нуклеиновой кислоты, свойство белков, липидов, углеводов, антигенные свойства вирусов, репликация генома, серологическое родство, круг хозяев, способ передачи, связь с переносчиками, географическое распространение, тканевый тропизм, патогенность, патология, цитология, гистология.

Вирусы отнесены к царству Vira. По типу нуклеиновой кислоты выделяют рибовирусы (РНК- вирусы) и дезоксирибовирусы (ДНК-вирусы).

Предложены следующие таксоны (таксономические категории), по восходящей:

  1. Вид (Shtcies) вируса – это наиболее важная единица иерархии в системе классификации. Определение вида вируса принято в следующей формулировке: «Вирусный вид является политипической категорией (классом) вирусов, которая составляет реплицирующуюся линию и занимает особую экологическую нишу».
  2. Род (Genus) вируса представляет собой группирование вирусов, имеющих общие характеристики и отличающиеся от вирусов – членов других родов. Род обозначается наименованием с суффиксом –virus.
  3. Подсемейство (Subfamilia) и семейство (Familia) – объединяют роды вирусов с общими характеристиками, но отличные от свойств вирусов других семейств. Для обозначения подсемейств используют суффикс –virinae,а для семейств –viridae.
  4. Отряд (порядок) (Order) – собрание семейств вирусов с общими характеристиками, отличающими их от прочих порядков и семейств. Порядок обозначается наименованием с суффиксом –virales.

Отмечается, что категории подсемейств и родов разработано не для всех вирусов, а для фитовирусов классификация поднимается выше рода и семейства в очень редких случаях.

МКТВ в большинстве случаев использует, в качестве международных, английские названия вирусов.

Классификация вирусов по ICTV от 2012 года включает 7 отрядов (порядков): Caudovirales, Herpesvirales, Ligamenvirales, Mononegavirales, Nidovirales, Picornavirales, Tymovirales. Предполагается существование восьмого порядка Megavirales.

Кто такие фаги

Самая суть

Большая часть вирусов — «пожиратели бактерий», хоть никого и не жрут. Фаг может убить бактерию, а может сделать из нее зомби. Для нас это хорошо.

История открытия

В конце XIX века британский бактериолог Эрнест Ханкин, сражавшийся с холерой в Индии, изучал воды рек Ганг и Джамна, которые местные жители считали целебными. Ханкин, энтузиаст кипячения воды и теории Пастера о том, что болезни вызываются микроорганизмами, а не миазмами (вредоносными испарениями — так думали врачи еще в середине XIX века), обнаружил, что суеверные индусы правы: какой-то неопознанный объект непонятным образом обеззараживает воду священных рек без всякого кипячения.

Лишь спустя 20 лет неопознанному объекту придумали название: Феликс Д’Эрелль из Института Пастера предложил называть этих существ «бактериофагами», в переводе с греческого — «пожирателями бактерий». Он пришел к выводу, что бактериофаги — вирусы, паразитирующие на бактериях.

Феликс Д’Эрелль

Сейчас их нередко зовут просто фагами. Эти вирусы прикрепляются к стенкам бактерий и впрыскивают в них свой генетический материал. Попав внутрь, генетическая программа вируса запускает производство новых вирусов. В итоге одни ферменты бактерии создают копии вирусного генома, другие — строят по вшитым в него инструкциям белки, третьи — собирают мириады клонов. Порабощенная фагом бактерия превращается в фабрику по созданию его клонов, которые могут выходить наружу вместе с метаболитами или «взрывать» бактериальную клетку. Так или иначе полчища клонов освобождаются и отправляются заражать всё новые бактерии.

Для бактерии встреча с фагами не всегда заканчивается печально: бактериофаги бывают вирулентными и умеренными. Если клетке не повезет и она повстречает вирулентного фага, то погибнет (у биологов этот процесс называется лизисом). Фаг использует такую клетку как ясли для своего потомства. Умеренные фаги обычно более дружелюбны. Они делают из бактерии зомби: она переходит в особую форму — профаг, когда вирус интегрируется в геном клетки и сосуществует с ней. Это сожительство может стать симбиозом, в котором бактерия приобретет новые качества и эволюционирует.

Способность вирусов уничтожать вредоносные бактерии привлекла к ним внимание ученых. Впервые фагов, этих цепных собак биологов, натравили на стафилококк ещё в 1921 году

Их активно изучали в Советском Союзе. Основоположник этого направления грузинский микробиолог Георгий Элиава был учеником Феликса Д’Эрелля. По его инициативе в 30-е годы был создан Институт исследования бактериофагов в Грузии, а позднее фаготерапия в СССР получила одобрение на самом высоком уровне. Были разработаны стрептококковый, сальмонеллезный, синегнойный, протейный и другие фаги.

Адсорбция бактериофагов на поверхности бактериальной клетки

Западные ученые отнеслись к фагам с меньшим энтузиазмом. Фаги очень чувствительные и в неподходящих условиях внешней среды теряют супергеройские способности. А тут как раз открыли и успешно применили первый антибиотик, и о фагах надолго позабыли.

Что мы знаем сегодня

В последнее время интерес к фагам стал возрождаться. Невероятная адаптивность позволила бактериям развить устойчивость к антибиотикам, в результате чего появились супербактерии, резистентные ко всем видам лекарств. Ежегодно от болезней, вызванных такими патогенами, умирает около 700 тыс. человек. И фаги могут нам помочь. Главный недостаток бактериофагов — они умеют атаковать только конкретные виды бактерий, поэтому, чтобы справиться со всеми, с кем необходимо, требуется разработка широкого спектра фагов.

В 2005 году биологи из Университета Сан-Диего показали, что вирусы — самые распространенные биологические объекты на планете, и больше всего среди них именно бактериофагов.

Всего на данный момент описано более 6 тыс. видов вирусов, но ученые предполагают, что их миллионы.

[править] Классификация

В таксономии живой природы вирусы выделяются в отдельный таксон Vira, образующий в классификации Systema Naturae 2000 вместе с доменами Bacteria, Archaea и Eukaryota корневой таксон Biota. На протяжении XX века в систематике выдвигались предложения о создании выделенного таксона для неклеточных форм жизни (Aphanobionta Novak, 1930; надцарство Acytota Jeffrey, 1971; Acellularia), однако такие предложения не кодифицировано.

Вирусы классифицируются на содержащие ДНК (вирус простого герпеса) и содержащие РНК (вирус иммунодефицита человека). По структуре капсомеров. Изометрические (кубические), спиральные, смешанные. По наличию или отсутствию дополнительной липопротеиновой оболочки (суперкапсида) вирусы делятся на простые и сложные. За клетками-хозяевами Наиболее применяемая в настоящее время классификация вирусов предложена лауреатом Нобелевской премии Дэвидом Балтимором . Она построена на типе нуклеиновой кислоты, используется вирусом для переноса наследственного материала, и на том, каким путем происходит ее экспрессия и репликация. Стоит отметить, что такая классификация не отражает филогенетические связи между видами вирусов, так как вирусы, согласно общепринятым сейчас взглядом, имеют механизмы происхождения, отличные от всех других организмов.

В отличие от клеточных организмов, генетическая информация которых хранится в виде двухцепочечной ДНК, геном вируса может сохраняться как в виде двух-, так одноцепочечной нуклеиновой кислоты . При этом этой кислотой может быть как ДНК, так и РНК, матричная форма которой (м-РНК) используется в клетках как промежуточный продукт при трансляции генетической информации в процессе синтеза протеинов. РНК-геномы вирусов могут быть закодированы в двух противоположных направлениях: или гены расположены в направлении от 5′-конца молекулы к 3′-конца (положительное направление, или + полярность), аналогично направлении расположения генов в м-РНК в клетках, или гены вирусного генома расположены в противоположном направлении (отрицательный направление или -полярность).

Таксономия вирусов в основных чертах похожа на таксономию клеточных организмов. Таксономические категории, используемые в классификации вирусов, такие (в скобках приведены суффиксы для образования латинских названий):

  • Отряд (-virales)
  • Семейство (-viridae)
  • Подсемейство (-virinae)
  • Род (-virus)
  • Вид

Но в номенклатуре вирусов есть и некоторые особенности, отличающие ее от номенклатуры клеточных организмов. Во-первых, названия не только видов и родов, но также рядов и семей пишутся курсивом; во-вторых, в отличие от классической линнеевськои номенклатуры, названия вирусов не является биноминальной.

Всего в настоящее время описано около 80 семейств, в которые входят примерно 4000 отдельных видов вирусов.

Распределение семей на ряды начался недавно и происходит медленно; в настоящее время выделены и описаны диагностические признаки только 3 рядов, и большинство описанных семей является неклассифицированными.

Вместо заключения: а могут ли вирусы приносить пользу?

Безусловно, да. Несмотря на то, что вирусы ассоциируются у большинства людей с однозначным вредом, они могут приносить и пользу — если речь идет о так называемых вирусных векторах и терапевтических подходах на их основе.

Исследователи давно научились помещать в белковую оболочку вируса интересующие их нуклеиновые кислоты, чтобы доставлять нужный ген в клетки, а также убирать те гены, которые делают вирус опасным для организма.

Это позволило сделать возможной генную терапию, помогающую бороться с заболеваниями, вызванными известными генетическими мутациями. Создание вирусных векторов — достаточно непростая задача, к тому же ограниченная свойствами самих вирусных частиц: количеством помещающейся генетической информации, местом ее вставки, стабильностью. Кроме того, вирусный вектор, используемый в медицине, не должен вызывать иммунного ответа или критично влиять на жизнедеятельность клетки. Тем не менее эти сложности решаются, поэтому уже одобрен ряд вполне успешных и безопасных генных терапий. А в качестве основы для вирусных векторов чаще всего используются ретро-, ленти-, адено- и аденоассоциированные вирусы.

Прогрессивно. От простого к сложному

Взглянем хотя бы на ретровирусы, геном которых представляет собой одноцепочечную молекулу РНК (например, ВИЧ). Оказавшись в клетке хозяина, такие вирусы используют специальный фермент, обратную транскриптазу, превращая ее в обычную двойную ДНК, которая затем проникает в «святая святых» клетки — в ядро.

Здесь в действие вступает другой вирусный белок, интеграза, который осуществляет «врезку», встраивая вирусные гены в ДНК хозяина. Затем с ними начинают работать собственные ферменты клетки: производят новые РНК, синтезируют на их основе белки и т. д.

Visual scienceВирус иммунодефицита человека (ВИЧ)

Такой механизм напоминает воспроизводство мобильных генетических элементов — фрагментов ДНК, которые не несут нужной нам информации, но сохраняются и накапливаются в нашем геноме. Некоторые из них, ретротранспозоны, способны даже размножаться в нем, распространяясь все новыми копиями (ДНК человека состоит из таких «мусорных» элементов более чем на 40 процентов).

Для этого в них могут содержаться фрагменты, кодирующие оба ключевых фермента — и обратную транскриптазу, и интегразу. По сути, это почти готовые ретровирусы, лишенные лишь белковой оболочки. Но ее приобретение — дело времени.

Встраиваясь в геном то тут то там, мобильные генетические элементы вполне способны захватывать новые гены хозяев. Некоторые из них могли оказаться подходящими для образования капсида. Многие белки склонны к «самосборке» в более сложные структуры. Например, белок ARC, который играет важную роль в работе нейронов, в свободной форме самопроизвольно складывается в вирусоподобные частицы, которые даже могут нести внутри РНК. Предполагается, что включение таких белков могло происходить около 20 раз, дав начало крупным современным группам вирусов, различающихся структурой своей оболочки.

Чем опасны реликтовые вирусы

При этом такая “вирусная информация” не является безопасной, так как существует механизм обратной транскрипции, открытый в 1970 году двумя нобелевскими лауреатами, американскими учеными Говардом Темином и Дэвидом Балтимором. Благодаря такому механизм, вирусы могут возвращаться в мутировавшем виде, возможно, даже в виде супервируса, который вызовет глобальную эпидемию. Вирус как бы говорит: “Это не моя война”. После чего все равно берет пулемет и идет воевать.

Взгляд вируса, который ушел в отставку, но ему сказали, что надо вернуться.

Часто такое “восстание” производится за счет некой кооперации вирусов. Раньше она считалась невозможной, но теперь доказано обратное. Реально существующий вирус попадает в организм, а реликтовый вирус, содержащийся в ДНК, например, снабжает его белковыми структурами.

Именно из-за наличия в ДНК живых организмов реликтовых вирусов многие ученые категорически выступают против пересадки органов от животных человеку. Такое объединение тканей может поспособствовать появлению супервируса, который победить будет просто невозможно.

[править] Литература

  • Arshan Nasir, Kyung Mo Kim and Gustavo Caetano-Anolles Giant viruses coexisted with the cellular ancestors and represent a distinct supergroup along with superkingdoms Archaea, Bacteria and Eukarya BMC Evolutionary Biology 2012, 12:156 doi:10.1186/1471-2148-12-156;
  • Вирусология. Под редакцией Филдса Б., Найта Д., тт. 1-3, М., 1989;
  • Стэнли У., Вэленс Э., Вирусы и природа жизни, пер. с англ., М., 1963;
  • Рыжков В. Л., Вирусы, в сб.: Глазами ученого, М., 1963;
  • Рыжков В. Л., Краткий очерк истории изучения вирусов, «Тр. института истории естествознания и техники АН СССР», 1961, т. 36, в. 8;
  • Вирусология и иммунология, под ред. Л. А. Зильбера, М., 1964;
  • Молекулярные основы биологии вирусов, М., 1966;
  • Стент Г., Молекулярная биология вирусов бактерий, пер. с англ., М., 1965;
  • Эндрюс К., Естественная история вирусов, пер. с англ., М., 1969;
  • The viruses, ed. F. М. Burnet and W. М. Stanley, v. 1—3, N. Y. — L., 1959;
  • Fenner F. J., The biology of animal viruses, v. 1, N. Y., 1968;
  • Gibbs A., Plant virus classification, «Advances in Virus Research», 1969, v. 14, p. 263—328.

Самые крупные эпидемии

Вирусы могут как приводить к заболеваниям некоторых людей или животных, так и к эпидемиям. В истории было несколько крупных эпидемий, которые унесли сотни тысяч жизней. Кстати, по некоторым данным, призванными из “Старого света” вирусами было убито до 70 процентов коренного населения Америки после её открытия. Это уже является признаком пандемии, которую не стоит путать с простой эпидемией.

Самой известной эпидемией является та, которая была вызвана испанским гриппом в 1918-1919 годах. Она была вызвана очень агрессивной формой вируса гриппа А. В отличии от обычного гриппа, который опасен, в первую очередь, для более слабых людей (пожилые, дети, люди с хроническими заболеваниями), испанский грипп уносил с собой здоровых людей среднего возраста. Всего умерло по разным оценкам от 50 миллионов до 100 миллионов человек. То есть около 5 процентов населения Земли того времени.

Так выглядели импровизированные госпитали времен «испанки».

Согласно определениям и цифрам, ВИЧ можно считать настоящей пандемией, так как сейчас по разным оценкам зараженных на нашей планете почти 40 миллионов человек. Он этого вируса с момента первого заболевания в 1981 году до наших дней умерло столько людей, что именно этот вирус можно считать самым смертоносным во всей истории человечества. При этом, считается, что этот вирус появился в течение двадцатого века в Африке, южнее Сахары. Возможно, он произошел от одного из реликтовых вирусов, о которых я говорил выше.

Сейчас бушует китайский коронавирус 2019-nCoV, которым на момент написания статьи заражено почти 860 000 человек, из которых примерно 42 000 умерло. Не самые большие показатели, если смотреть в историю, но вирус продолжает распространяться по всему миру. Напомню, первые случаи были выявлены среди посетителей городского рынка в городе Ухань. На рынке продавались редкие животные. Возможно, они и стали источником вируса.

Геномы и гены. Как изучают эволюцию вирусов

К сожалению, вирусы невероятно изменчивы. У них отсутствуют системы починки (репарации) повреждений ДНК, и любая мутация сохраняется в геноме, подвергаясь дальнейшему отбору. К тому же, разные вирусы, заразившие одну и ту же клетку, легко обмениваются фрагментами ДНК (или РНК), порождая новые рекомбинантные формы.

Наконец, смена поколений происходит необычайно быстро — например, продолжительность жизненного цикла ВИЧ составляет всего 52 часа, и он далеко не самый короткоживущий. Все эти факторы и обеспечивают стремительную изменчивость вирусов, которая сильно затрудняет прямой анализ их геномов.

Вместе с тем, оказавшись в клетке, вирусы зачастую не запускают своей обычной паразитической программы — одни так устроены, другие — из-за случайного сбоя. При этом их ДНК (или РНК, заранее превращенная в ДНК) может встраиваться в хромосомы хозяина и затаиться здесь, затерявшись среди множества генов самой клетки. Иногда вирусный геном реактивируется, а иногда сохраняется в таком скрытом виде, передаваясь из поколение в поколение.

Считается, что на такие эндогенные ретровирусы приходится до 5−8 процентов нашего собственного генома. Изменчивость их уже не так велика — клеточная ДНК меняется не столь стремительно, да и жизненный цикл многоклеточных организмов достигает десятков лет, а не часов. Поэтому фрагменты, которые сохраняются в их клетках, служат ценным источником информации о прошлом вирусов.

Отдельную и еще более юную область представляет собой протеомика вирусов — изучение их белков. Ведь, в конце концов, любой ген — это всего лишь код для определенной белковой молекулы, необходимой для выполнения определенных функций. Одни «стыкуются», словно детали Lego, складывая вирусную оболочку, другие могут связывать и стабилизируют вирусную РНК, третьи использоваться для атаки на белки зараженной клетки.

Меры профилактики распространения вирусных заболеваний

Вирусы поражают живые организмы: от их вмешательства страдают растения, животные, человек. Сотни миллионов людей погубила «испанка», черная оспа, ВИЧ. После перенесенных заболеваний организм начинает производить защитные тела против конкретной инфекции, вырабатывая приобретенный иммунитет.

Вирусы способны извлекать часть генетической информации хозяина и внедрять их в другую жертву, осуществляя перенос генетической информации. Они поставляют генетический материал, осуществляя горизонтальный перенос генов и вызывая мутации

Это приводит к изменчивости и формированию новых признаков, что важно для эволюционного процесса

Избежать контакта с вирусными частицами сложно, так как они встречаются повсюду. Но некоторые меры профилактики помогают избежать развития вирусной инфекции:

  • использование марлевых повязок при контактах с больными людьми или при их значительном скоплении;
  • своевременная вакцинация;
  • мытье рук;
  • промывание плодов овощей и фруктов;
  • обработка места нахождения инфицированного больного.

Вирусы действуют по-разному, поэтому и меры профилактики могут отличаться. Так, чтобы не заразиться ВИЧ нужно отказаться от наркотиков, следить за стерильностью инструментов при проколах кожи (контакт с кровью), иметь одного полового партнера или использовать средства индивидуальной защиты.

Вироиды

Это мельчайшие частицы, которые вызывают болезни растений. Они действуют по принципу вируса, но не способны создавать собственные белки для построения клеточной оболочки, используя белки клетки-хозяина. Иногда, вироиды делят чужую ДНК на несколько частей, вызывая постепенную гибель растения. Как пример: вироиды уничтожили миллионы кокосовых пальм на Филлипинских островах.

Прионы

Инфекционные агенты имеют форму нити или кристалла и образованы белковыми молекулами с третичной структурой. Они проникают в организм с продуктами питания и «переделывают» здоровые белки хозяина на свои. Деформированные белки приводят к сбоям обменных процессов, нарушениям метаболизма, нормальной работы нервной системы. Например, они являются виновниками неизлечимых заболеваний: «коровьего бешенства», болезни Крейтцфельдта-Якоба, куру и других.

Благодаря созданной системе построения классификации живых организмов есть возможность наблюдать, как происходила эволюция на планете и постепенно происходило усложнение организации. Биосфера создана из живых существ, которые получили наследственный материал от предков и приспособились к жизни в определенных экологических нишах. Не все еще открыты и до конца изучены, но благодаря систематике просматривается стройная картина живого мира. 

Смотри также:

  • Многообразие организмов
  • Значение работ К. Линнея и Ж-Б. Ламарка
  • Основные систематические категории: вид, род, семейство, отряд (порядок), класс, тип (отдел), царство; их соподчиненность

Общие и антигенные свойства

Кроме основных свойств, присущих семейству Picornaviridae и перечисленных выше, К. в. обладают устойчивостью к повышенной температуре в присутствии катионов (в 1 М р-ре MgCl2 жизнеспособность энтеровирусов сохраняется в течение 1 часа при t° 50°), что используется для термо-стабилизации живой полиовирусной вакцины. К. в. устойчивы к антибиотикам и многим дезинфицирующим средствам, но надежно инактивируются формальдегидом. Так как при этом антигенная специфичность сохраняется, формалин применяется для получения инактивированной полиовирусной вакцины и инактивированной вакцины из энтеровируса 71. Свободный остаточный хлор (0,3—0,5 мг/л) быстро инактивирует энтеровирусы в водных суспензиях, однако присутствие органических веществ, связывающих хлор, может значительно снизить эффект инактивации. По-видимому, этим объясняется обнаружение рядом авторов активных энтеровирусов в водопроводной воде, подвергшейся хлорированию. Для надежного обеззараживания при работе с К. в. рекомендуется использовать кипячение и автоклавирование. Ультрафиолетовый свет также применяют для инактивации энтеровирусов. К. в. плохо переносят высушивание. Для их хранения используют низкие температуры (при комнатной температуре К. в. сохраняются в течение нескольких дней, при температуре обычного холодильника — в течение нескольких недель, а в замороженном состоянии — в течение многих лет). В присутствии некоторых красителей (нейтрального красного, акридинового оранжевого, профлавина) К. в. инактивируются видимым светом.

После выделения в 1908 г. К. Ландштейнером и Поппером (Е. Popper) вируса полиомиелита его считали единственным возбудителем этой болезни. Однако в 30-х гг. появились сообщения об антигенных различиях между отдельными штаммами полиовируса. Большая группа исследователей в 1948—1952 гг. выявила существование трех самостоятельных антигенных типов полиовируса (Committee on Typing of the National Foundation for Infantile Paralysis, 1951; 1953). Было установлено, что тип I наиболее важен эпидемиологически, являясь причиной 80—90% случаев спорадической заболеваемости и большинства вспышек полиомиелита. Полученные данные о трех типах полиовируса содействовали рациональной разработке специфической вакцинопрофилактики полиомиелита.

При детальном изучении других групп К. в. (Коксаки и ECHO) было установлено, что вирус Коксаки А23 идентичен вирусу ECHO-1, поэтому его не рассматривают как самостоятельный тип. Вирусы ECHO-1 и ECHO-8 очень близки по антигенному составу (ECHO-1 обладает более широким спектром) и считаются одним типом. Вирус ECHO-10 после детального изучения был отнесен к реовирусам, а вирус ECHO-28 — к риновирусам. У некоторых типов К. в. обнаружены так наз. прим-варианты, которые плохо нейтрализуются антисыворотками к прототип-ному штамму, но вызывают образование антител, хорошо нейтрализующих прим-вариант и прототип. Примварианты имеют вирусы ECHO-1, -4, -5, -6, -11, -30. Некоторые К. в. имеют тенденцию агрегироваться в суспензиях, что иногда затрудняет их идентификацию, т. к. вирусные агрегаты плохо нейтрализуются специфической сывороткой. Между нек-рыми К. в. существует антигенное родство. Им обладают вирусы Коксаки А3 и А8, А11 и А15, А13 и А18, ECHO-12 и ECHO-29, ЕСНО-6 и ECHO-30. Ряд вирусов Коксаки и ECHO агглютинирует эритроциты человека группы 0 — Коксаки А20, А21, А24, В1, В3, В5, B6, ECHO-3, -6, -7, -11, -12, -13, -19, -20, -21, -24, -25, -29, -30, -33; вирус Коксаки А7 агглютинирует куриные эритроциты, что помогает при типировании К. в.

Что такое микробы?

Микробы — общее название для живых микроорганизмов, которые, без преувеличения, присутствуют повсюду. Микробы обитают в воде, земной коре, внутри организмов растений и животных — по распространенной теории считается, что именно они были первыми живыми организмами на планете. Согласно «Справочнику по бактериологической систематике» бактериолога Дэвида Хендрикса Берджи, все микробы делятся на два класса —

прокариоты

и 

эукариоты

.

Прокариоты 

— одноклеточные микроорганизмы, которые не обладают оформленным клеточным ядром. К классу прокариотов относятся

археи

и 

бактерии

.

Эукариоты

в противовес прокариотам обладают клеточными ядрами. Традиционно к эукариотам относят животных и растения, а из микроорганизмов —

микроскопические водоросли

и 

грибы

. Эукариоты могут быть как многоклеточные, так и одноклеточные, главное, что они имеют одинаковое строение клеток.

Как вирусы поселились в нашей ДНК

Самая суть

В геноме человека затаились древние вирусы. Они составляют более 8% нашей ДНК. И мы им многим обязаны.

История открытия

В 1960-х годах ученые поняли, что некоторые вирусы могут вызывать рак. Одним из них был вирус птичьего лейкоза, угрожавший всему птицеводству. Вирусологи выяснили, что он относится к группе так называемых ретровирусов, внедряющих свой генетический материал в ДНК клетки-носителя. Такая ДНК будет производить новые копии вируса, но если вирус по ошибке встроился не в то место ДНК, клетка может стать раковой и начать делиться. Вирус птичьего лейкоза оказался очень странным ретровирусом. Ученые находили его белки в крови совершенно здоровых куриц.

Пять важнейших открытий вирусологии_4

Курица с саркомой, с которой начались исследования, выявившие, что некоторые вирусы могут вызывать рак

Фото: nplus1.ru

Робин Вайс, вирусолог из Университета Вашингтона, первым понял, что вирус мог интегрироваться в ДНК курицы, стать ее неотъемлемой и уже неопасной частью. Вайс и его коллеги обнаружили этот вирус в ДНК многих пород кур. Отправившись в джунгли Малайзии, они изловили банкивскую джунглевую курицу, ближайшую дикую родственницу домашней, — она несла в ДНК тот же вирус! Когда-то давно иммунная система куры-предка сумела подавить вирус, и, обезвреженный, он стал передаваться по наследству. Ученые назвали такие вирусы эндогенными, то есть производимыми самим организмом.

Вскоре выяснилось, что эндогенных ретровирусов полно в геномах всех групп позвоночных. А в 1980 году их обнаружили и у человека.

Что мы знаем сегодня

Согласно данным исследователей из Мичиганского университета, на долю эндогенных ретровирусов приходится более 8% нашего генома. При этом обнаружены далеко не все вирусные последовательности, которые осели в геноме человека. Искать их сложно: они встречаются у одного и отсутствуют у другого.

Злокачественные клетки, зараженные вирусом Эпштейна-Барр. В качестве носителя этот вирус использует ДНК

Некоторые эндогенные вирусы остаются опасными, но большинство уже неспособно запустить вирусную программу и захватить мир. До недавнего времени их считали «генетическим мусором». Но оказалось, что порой интеграция вирусов в ДНК ведет к появлению полезных генетических программ. Например, многие участки ДНК, которые регулируют активность генов, участвующих во врожденном иммунитете, являются ретровирусами. А недавно российские ученые обнаружили у человека эндогенный ретровирус, регулирующий работу мозга и отсутствующий у других приматов, — получается, мы обязаны вирусам какими-то важнейшими своими особенностями! Правда, этот же вирус, возможно, привел к возникновению шизофрении.

Друзья или враги нам эндогенные ретровирусы, сказать сложно, потому что нет уже деления на нас и них, — мы соединились в одно существо.

[править] Происхождение

В процессе изучения природы вирусов, после открытия их Дмитрием Ивановским (1892) формировались представления о вирусах как о мельчайших организмах. Эпитет «фильтрующийся» впоследствии был отброшен, так как стали известны фильтрующиеся формы или стадии обычных бактерий, а затем и фильтрующиеся виды бактерий. Правдоподобной является гипотеза о том, что вирусы произошли из «беглой» нуклеиновой кислоты, то есть нуклеиновой кислоты, которая приобрела способность реплицироваться независимо от той клетки, из которой возникла, хотя при этом предполагается, что такая ДНК реплицируется с использованием структур этой или другой клеток.

На основании опытов фильтрации через градуированные линейные фильтры были определены размеры вирусов. Оказалось, что размер мельчайших из них составлял 20-30 нанометров, а наибольших — 300—400 нанометров.

В процессе дальнейшей эволюции у вирусов менялась больше форма, чем химическое строение.

Классификация вирусов на основе структуры

Было высказано предположение, что сходство в сборке и структуре вирусов, наблюдаемых для определенных вирусных групп, инфицирующих хозяев из разных сфер жизни (например, бактериальных теквирусов и эукариотических аденовирусов или прокариотических Caudovirales и эукариотических герпесвирусов), отражает эволюционные отношения между этими вирусами. Поэтому было предложено использовать структурные отношения между вирусами в качестве основы для определения таксонов более высокого уровня — вирусных линий на основе структуры — которые могли бы дополнить существующую схему классификации ICTV.