Что такое черный карлик. виды звезд

Странный объект

Сразу после открытия первого пульсара астрономы пытались понять тип звезды, излучающей такой сигнал. Пульсар, который астрономы Белл и Хьюиш обнаружили, имел период чуть более одной секунды (1.3373011 секунд). Опираясь на общепринятые типы звездных моделей исследователи установили, что только белый карлик может обладать такими свойствами вращения. Однако вскоре были обнаружены гораздо более быстрые пульсары. Их период вращения равнялся миллисекундам. Только нейтронные звезды способны вращаться так быстро. Поэтому астрономы остановились на этих объектах, как объясняющих общий механизм работы пульсаров.

Система АР Скорпиона состоит из белого и красного карликов, полностью обращающиеся по орбите вокруг друг друга каждые 3,6 часа. Они удалены на расстояние около 1,4 миллиона километров друг от друга. Это в три раза превышает расстояние между Землей и Луной. К тому же, белый карлик вращается вокруг своей оси с периодом две минуты, облучая при этом своего компаньона пучком излучения. Этот пучок возбуждает электроны в атмосфере красного карлика, ускоряя эти частицы почти до скорости света. Это вызывает изменения яркости. Их можно наблюдать с Земли с периодичностью вращения белого карлика.

АР Скорпиона работает как гигантская динамо-машина. Это магнит размерами Земли, с полем ~10,000 сильнее, чем любое поле, которое мы можем произвести в лаборатории. И он вращается каждые две минуты. Это создает очень сильные электрические токи в звезде-компаньоне, которая затем производит изменения в регистрируемом излучении.

Голубые отставшие звезды – звезды голубого цвета

Специалисты, пытающиеся объяснить природу их возникновения, выдвинули несколько теорий. Наиболее вероятная из них указывает о том, что данные звезды голубого цвета в прошлом были двойными, после чего у них начал происходить или происходит сейчас процесс слияния. Итогом слияния двух звезд становится возникновение новой звезды, имеющей гораздо большую массу, яркость и температуру, чем звезды такого же возраста.

Если верность этой теории удастся каким-то образом доказать, теория звездной эволюции лишилась бы проблем в виде голубых отставших. В составе получившейся звезды имелось бы большее количество водорода, который вел бы себя аналогично молодой звезде. Существуют факты, подтверждающие такую теорию. Наблюдения показали, что чаще всего отставшие звезды встречаются в центральных регионах шаровых скоплений. В результате преобладающего там числа звезд единичного объема, близкие прохождения или же столкновения становятся более вероятными.

Для проверки данной гипотезы необходимо заняться изучением пульсации голубых отставших, т.к. между астросейсмологическими свойствами слившихся звезд и нормально пульсирующих переменных, могут быть некоторые отличия. Стоит отметить, что измерять пульсации достаточно тяжело. На этот процесс также негативно переполненность звездного неба, малые колебания пульсаций голубых отставших, а также редкость их переменных.

Один из примеров слияния можно было наблюдать в августе 2008 года, тогда такое происшествие коснулось объекта V1309, яркость которого после обнаружения возросла несколько десятков тысяч раз, а по прошествии нескольких месяцев вернулась к первоначальному значению. В результате 6-летних наблюдений, ученые пришли к выводу, что данный объект является двумя звездами, период обращения которых друг вокруг друга составляет 1,4 дня. Эти факты натолкнули ученых на мысль, что в августе 2008 года происходил процесс слияния этих двух звезд.

Для голубых отставших характерным является высокий вращательный момент. К примеру, скорость вращения звезды, которая располагается в середине скопления 47 Тукана, в 75 раз превышает скорость вращения Солнца. Согласно гипотезе, их масса в 2-3 раза превышает массу иных звезд, которые располагаются в скоплении. Также при помощи исследований было установлено, что если звезды голубого цвета близко располагаются к каким либо другим звездам, то у последних будет процентное содержание кислорода и углерода ниже, чем у соседей. Предположительно, звезды перетягивают данные вещества с других, движущихся по их орбите звезд, в результате чего возрастает их яркость и температура. У «обворованных» звезд обнаруживаются места, где произошел процесс превращения исходного углерода в другие элементы.

Эрида

Небесное тело, названное
в честь древнегреческой богини раздора, было открыто в 2005 году. Для его
обнаружения американским астрономам пришлось изучать многочисленные снимки
пояса Койпера, сделанные за последние 50 лет.

Расположена Эрида в области Рассеянного диска – удаленной части Солнечной системы, заполненной ледяными телами. Сама она также состоит из углеводородных льдов, которые, испаряясь, создают тонкую временную газовую оболочку.

Эрида – самая массивная
планета-карлик. А по размерам она лишь немного уступает Плутону. Ее орбита
имеет высокий коэффициент эксцентричности, а также сильно наклонена к плоскости
эклиптики. Из-за таких орбитальных характеристик Эриду относят к обособленным транснептуновым
объектам. Небесное тело удалено от Солнца в среднем на 10 млрд. км . из-за чего
не его поверхности температура не поднимается выше -253°С.

Таинственные планеты-карлики

Астрономы всего мира продолжают поиск новых планетарных карликов в Солнечной системе. На ее задворках совсем недавно были найдены два транснептуновых объекта, по всем параметрам подходящие под определение карликовых планет. Их именуют Гоблин и Farout.

Обе планеты входят в число самых далеких объектов нашей звездной системы. Гоблин удален от Солнца на 80 астрономических единиц, тогда как Фараут — на 125. Эти тела были найдены в рамках поисков таинственной планеты Нибиру. Точных размеров и массы Гоблина и Farout ученым установить пока не удалось. Известно только, что они покрыты льдом неизвестного химического состава.

Эти таинственные небесные
карлики лишь открывают целый ряд новых космических объектов. Вполне возможно,
что МАС вновь пересмотрит критерии различных астрономических понятий и список
планет, а также планетарных карликов существенно расширится.

Общие характеристики

Спектр звезды класса M6V

Красные карлики довольно сильно отличаются от других звёзд. Масса красных карликов не превышает трети солнечной массы (нижний предел массы — 0,0767M, затем идут коричневые карлики). Температура фотосферы красного карлика может достигать 3500 К, что превышает температуру спирали лампы накаливания, поэтому, вопреки своему названию, красные карлики, аналогично лампам, испускают свет не красного, а скорее охристо-желтоватого оттенка. Звезды этого типа испускают очень мало света, иногда в 10 000 раз меньше чем Солнце. Из-за низкой скорости термоядерного сгорания водорода красные карлики имеют очень большую продолжительность жизни — от десятков миллиардов до десятков триллионов лет (красный карлик с массой в 0,1 массы Солнца будет гореть 10 триллионов лет). В недрах красных карликов невозможны термоядерные реакции с участием гелия, поэтому они не могут превратиться в красные гиганты. Со временем они постепенно сжимаются и всё больше нагреваются, пока не израсходуют весь запас водородного топлива, и постепенно превращаются в голубые карлики, а затем — в белые карлики с гелиевым ядром. Но с момента Большого взрыва прошло ещё недостаточно времени, чтобы красные карлики смогли сойти с главной последовательности.

Тот факт, что красные карлики остаются на главной последовательности, в то время как другие звезды сходят с неё, позволяет определять возраст звёздных скоплений путём нахождения массы, при которой звёзды вынуждены сойти с главной последовательности. Кроме того, тот факт, что на данный момент не найдено ни одного красного карлика вне главной последовательности, свидетельствует о том, что Вселенная имеет конечный возраст.

Характеристики красных карликов
Спектральный класс Радиус Масса Светимость Температура Типичные представители
R/R M/M L/L K
M0 0,64 0,47 0,075 3850 GJ 278C
M1 0,49 0,49 0,035 3600 GJ 229A
M2 0,44 0,44 0,023 3400 Лаланд 21185
M3 0,39 0,36 0,015 3250 GJ 725A
M4 0,26 0,20 0,0055 3100 Звезда Барнарда
M5 0,20 0,14 0,0022 2800 GJ 866AB
M6 0,15 0,10 0,0009 2600 Вольф 359
M7 0,12 0,09 0,0006 2500 Ван Бисбрук 8
M8 0,11 0,08 0,0003 2400 Ван Бисбрук 9
M9 0,08 0,079 0,00015 2300 LHS 2924
M9.5 0,08 0,075 0,0001 2250 DENIS-P J0021.0–4244

Седна

Единственная известная карликовая планета облака Оорта была открыта в ноябре 2003 года. Названа в честь богини морских зверей в эскимосской мифологии. Считается одним из наиболее удаленных тел Солнечной системы, что очень затрудняет ее исследование.

Известно, что по размерам и массе среди всех планет-карликов ей уступает только Церера. Поверхность Седны – слой метанового и водяного льдов. Постоянной атмосферы небесное тело не имеет. Точную температуру установить пока не удалось.

Из-за высокой
эксцентричности орбиты и большой удаленности от Солнца год на Седне самый
продолжительный среди известных объектов Солнечной системы. Он длится 11,5 тыс.
лет.

Жизнь на планетах у красных карликов

Термоядерные реакции красных карликов «экономны» — нуклеосинтез в недрах этих звёзд проходит медленно (это связано с массой звезды, её размерами и т. д.). Поэтому жизненный цикл красных карликов в сотни раз длиннее, чем у звёзд таких как Солнце. Если на какой-нибудь планете возле красного карлика возникла простейшая жизнь, то вероятность, что она разовьётся во что-нибудь интересное — несравненно выше, чем у таких недолговечных звёзд, как Солнце. Это связано с тем, что для развития высокоорганизованной жизни требуются миллиарды лет эволюции.

Авторское представление об экзопланете, обращающейся вокруг красного карлика GJ 1214

НептуномЗемли

Проблемы, связанные с климатом планет

Поскольку красные карлики довольно тусклые, то эффективная земная орбита должна быть близкой к звезде. Но планета, расположенная слишком близко к звезде, становится постоянно обращённой к ней одной стороной. Данное явление называется приливным захватом. Оно может вызвать разницу температур в разных полушариях (ночном и дневном), поскольку на дневном полушарии всегда тепло (может быть — очень жарко), а на ночном температура может приближаться к абсолютному нулю. Это, в свою очередь, может вызвать сильные ветры в атмосфере планеты.

Красные карлики во много крат активнее Солнца. Очень мощные вспышки могут быть губительными для возможной жизни на планете. Но магнитное поле планеты могло бы решить эту проблему — оно было бы барьером для радиации (как у Земли).

Вывод

Если мы ищем благоприятные для жизни планеты, то они должны обладать магнитным полем, способным препятствововать смертоносному излучению. Планета должна иметь атмосферу с температурой и давлением способными содержать воду в жидком состоянии. Орбита планеты должна быть близка к круговой (орбитальный эксцентриситет как можно более близкий к нулю), чтобы температура поверхности была в течение года-дня более-менее постоянной.

Эволюция белых карликов

Вне главной последовательности происходит процесс угасания звезды. Под воздействием сил гравитации нагретый газ красных гигантов и сверхгигантов разлетается по Вселенной, образуя молодую планетарную туманность. Через сотни тысяч лет туманность рассеивается, а на ее месте остается вырожденное ядро красного гиганта белого цвета. Температуры такого объекта достаточно высоки от 90000 К, оценивая по линии поглощения спектра и до 130000 К, когда оценка осуществляется в пределах рентгеновского спектра. Однако ввиду небольших размеров, остывание небесного светила происходит очень медленно.

Планетарная туманность

Та картина звездного неба, которую мы наблюдаем, имеет возраст в десятки-сотни миллиардов лет. Там, где мы видим белые карлики, в пространстве уже возможно существует другое небесное тело. Звезда перешла в класс черного карлика, конечный этап эволюции. В действительности на месте звезды остается сгусток материи, температура которого равняется температуре окружающего пространства. Главная особенность этого объекта — полное отсутствие видимого света. Заметить такую звезду в обычный оптический телескоп достаточно трудно ввиду слабой светимости. Основным критерием обнаружения белых карликов является наличие мощного ультрафиолетового излучения и рентгеновских лучей.

Все известные белые карлики в зависимости от своего спектра делятся на две группы:

  • объекты водородные, спектрального класса DA, в спектре которых отсутствуют линии гелия;
  • гелиевые карлики, спектральный класс DB. Основные линии в спектре приходятся на гелий.

Этап эволюции, в результате которой появляется белый карлик, является последним для немассивных звезд, к которым относится и наша звезда Солнце. На данном этапе звезда обладает следующими характеристиками. Несмотря на столь маленькие и компактные размеры звезды, ее звездное вещество весит ровно столько, сколько требуется для ее существования. Другими словами, белые карлики, которые имеют радиусы в 100 раз меньше радиуса солнечного диска, имеют массу равную массе Солнца или даже весят больше, чем наша звезда.

Этого говорит о том, что плотность белого карлика в миллионы раз выше плотности обычных звезд, находящихся в пределах главной последовательности. К примеру, плотность нашей звезды 1,41 г/см³, тогда как плотность у белых карликов может достигать колоссальных значений 105-110 г/см3.

Сириус B

По яркости света Сириус А в 22 раза превышает яркость нашего Солнца, а вот ее сестра Сириус В светит тусклым светом, заметно уступая по яркость своей ослепительной соседке. Обнаружить присутствие белого карлика удалось благодаря снимкам Сириуса, сделанным рентгеновским телескопом Чандра. Белые карлики не обладают ярко выраженным световым спектром, поэтому принято считать такие звезды достаточно холодными темными космическими объектами. В инфракрасном и в рентгеновском диапазоне Сириус В светит значительно ярче, продолжая излучать огромное количество тепловой энергии. В отличие от обычных звезд, где источником рентгеновских волн служит корона, источником излучения у белых карликов является фотосфера.

Находясь вне главной последовательности по распространенности эти звезды не самые распространенные объекты во Вселенной. В нашей галактике на долю белых карликов приходится всего 3-10% небесных светил. Для этой части звездного населения нашей галактики неопределенность оценки затрудняет слабость излучения в видимой области поляры. Другими словами, свет белых карликов не в состоянии преодолеть большие скопления космического газа, из которых состоят рукава нашей галактики.

Звездное кладбище в нашей галактике

Открытие

К началу 30-х гг. XX в. в общих чертах сложилась теория внутреннего строения звезд. Задавая массу звезды и ее химический состав, теоретики могли рассчитать все наблюдаемые характеристики звезды — ее светимость, радиус, температуру поверхности и т. д. Однако эту стройную картину нарушала невзрачная звездочка 40 Эридана В, открытая английским астрономом Вильямом Гершелем в 1783 г. Для своей высокой температуры она имела слишком небольшую светимость, а следовательно, слишком малые размеры. С точки зрения классической физики это не поддавалось объяснению. Спустя некоторое время были найдены и другие необычные звезды. Самым знаменитым из этих открытий стало открытие Сириуса В — невидимого спутника самой яркой звезды — Сириуса. Астроном Фридрих Вильгельм Бессель (немецкий математик и астроном), наблюдая за Сириусом, обнаружил, что он движется не по прямой, а «слегка по синусоиде». Примерно десять лет наблюдений и размышлений привели Бесселя к выводу, что рядом с Сириусом находится вторая звезда, оказывающая на него гравитационное воздействие.

Предсказание Бесселя подтвердились после того, как А. Кларк в 1862 г. сконструировал телескоп с объективом диаметром 46 см, на тот момент самый большой телескоп в мире. Для проверки качества линзы его направили на Сириус — самую яркую звезду. В поле зрения телескопа появилась еще одна звезда, неяркая, которую и предсказывал Бессель.

Температура Сириуса В оказалась равной 25 000 К — в 2,5 раза выше, чем у яркого Сириуса А. С учетом размеров звезды это указывало на чрезвычайно высокую плотность ее вещества — 106г/см³. Наперсток такого вещества весил бы на Земле миллион тонн.

Как оказалось, белые карлики — это звездные «огарки», ведущие свое происхождение от обычных звезд. Равновесие обычных звезд поддерживается силой давления раскаленной плазмы, которая противостоит силе гравитации (тяготения). Чтобы равновесие сохранялось, необходимы внутренние источники энергии, иначе звезда, теряя энергию на излучение потоков света в окружающее пространство, не выдержала бы противоборства с гравитационными силами. Таким внутренним источником служат термоядерные реакции превращения водорода в гелий. Как только в центральных областях звезды «выгорает» весь водород, равновесие нарушается и звезда начинает сжиматься под действием собственной тяжести. Типичная плотность окружающих нас предметов составляет несколько граммов на 1 см³ (примерно такова характерная плотность атома). Такую же среднюю плотность имеют звезды типа нашего Солнца. Однако, если обычную звезду сжать в 100 раз, атомы «вожмутся» друг в друга и звезда превратится в один гигантский атом, в котором энергетические уровни отдельных атомов «сцепятся» воедино. При таких плотно­стях электроны образуют так называемый вырожденный элек­тронный газ — особое квантовое состояние, при котором все электроны белого карлика «чувствуют» друг друга и образу­ют единый коллектив — именно он и противостоит гравитаци­онному сжатию. Так звезда превращается в плотное ядро — белый карлик.

Сверхновая звезда

Вспышка сверхновой

Второе название данного явления называется взрывом
сверхновой. Оно представляет собой конец эволюции некоторых звезд.  В результате вспышки увеличивается яркость
светила на 4—8 порядков, а потом она медленно затухает. Стоит отметить, что
химическая эволюция Галактики протекает благодаря тем самым взрывам сверхновой,
во время которых происходит выброс тяжелых элементов. Из этих остатков
формируются протозвезды с планетарными туманностями, а из этих туманностей — новые
звезды и планеты. По некоторым сведениям, так и произошло формирование Земли.

Астрономы отмечают, что не заметить взрыв сверхновой просто
невозможно. Вспышка настолько сильна, что затмевает сияние других звезд на
небе.

В ядре звезды происходит термоядерная реакция: водород
превращается в гелий и более тяжелые элементы с выделением большого количества
энергии. Когда водород в центре заканчивается, к нему начинают обрушиваться
верхние слои гелия. Затем вещество взрывается и сжимает ядро, унося при этом
верхние слои ударной волной. Это и есть взрыв.

Ученые считают, что в течение нескольких тысячелетий
произойдет вспышка сверхновой. В список вошли такие звезды, как IK Пегаса, Антарес
и Бетельгейзе.

Виды звезд в наблюдаемой Вселенной

Во Вселенной существует множество различных звезд. Большие и маленькие, горячие и холодные, заряженные и не заряженные. В этой статье мы назовем основные виды звезд, а также дадим подробную характеристику Жёлтым и Белым карликам.

  1. Жёлтый карлик. Жёлтый карлик – тип небольших звёзд главной последовательности, имеющих массу от 0,8 до 1,2 массы Солнца и температуру поверхности 5000–6000 K. Подробнее об этом типе звезд нем смотрите ниже.
  2. Красный гигант. Красный гигант – это крупная звезда красноватого или оранжевого цвета. Образование таких звезд возможно как на стадии звездообразования, так и на поздних стадиях их существования. Крупнейшие из гигантов превращаются в красных супергигантов. Звезда под названием Бетельгейзе из созвездия Орион – самый яркий пример красного супергиганта.
  3. Белый карлик. Белый карлик – это то, что остаётся от обычной звезды с массой, не превышающей 1,4 солнечной массы, после того, как она проходит стадию красного гиганта. Подробнее об этом типе звезд нем смотрите ниже.
  4. Красный карлик. Красные карлики – самые распространённые объекты звёздного типа во Вселенной. Оценка их численности варьируется в диапазоне от 70 до 90% от числа всех звёзд в галактике. Они довольно сильно отличаются от других звезд.
  5. Коричневый карлик. Коричневый карлик – субзвездные объекты (с массами в диапазоне примерно от 0,01 до 0,08 массы Солнца, или, соответственно, от 12,57 до 80,35 массы Юпитера и диаметром примерно равным диаметру Юпитера), в недрах которых, в отличие от звезд главной последовательности, не происходит реакции термоядерного синтеза c превращением водорода в гелий.
  6. Субкоричневые карлики. Субкоричневые карлики или коричневые субкарлики – холодные формирования, по массе лежащие ниже предела коричневых карликов. Масса их меньше примерно одной сотой массы Солнца или, соответственно, 12,57 массы Юпитера, нижний предел не определён. Их в большей мере принято считать планетами, хотя к окончательному заключению о том, что считать планетой, а что – субкоричневым карликом научное сообщество пока не пришло.
  7. Черный карлик. Черные карлики – остывшие и вследствие этого не излучающие в видимом диапазоне белые карлики. Представляет собой конечную стадию эволюции белых карликов. Массы черных карликов, подобно массам белых карликов, ограничиваются сверху 1,4 массами Солнца.
  8. Двойная звезда. Двойная звезда – это две гравитационно связанные звезды, обращающиеся вокруг общего центра масс.
  9. Новая звезда. Звезды, светимость которых внезапно увеличивается в 10 000 раз. Новая звезда представляет собой двойную систему, состоящую из белого карлика и звезды-компаньона, находящейся на главной последовательности. В таких системах газ со звезды постепенно перетекает на белый карлик и периодически там взрывается, вызывая вспышку светимости.
  10. Сверхновая звезда. Сверхновая звезда – это звезда, заканчивающая свою эволюцию в катастрофическом взрывном процессе. Вспышка при этом может быть на несколько порядков больше чем в случае новой звезды. Столь мощный взрыв есть следствие процессов, протекающих в звезде на последний стадии эволюции.
  11. Нейтронная звезда. Нейтронные звезды (НЗ) – это звездные образования с массами порядка 1,5 солнечных и размерами, заметно меньшими белых карликов, порядка 10-20 км в диаметре. Они состоят в основном из нейтральных субатомных частиц – нейтронов, плотно сжатых гравитационными силами. В нашей Галактике, по оценкам ученых, могут существовать от 100 млн до 1 млрд нейтронных звёзд, то есть где-то по одной на тысячу обычных звёзд.
  12. Пульсары. Пульсары – космические источники электромагнитных излучений, приходящих на Землю в виде периодических всплесков (импульсов). Согласно доминирующей астрофизической модели, пульсары представляют собой вращающиеся нейтронные звёзды с магнитным полем, которое наклонено к оси вращения. Когда Земля попадает в конус, образуемый этим излучением, то можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Некоторые нейтронные звёзды совершают до 600 оборотов в секунду.
  13. Цефеиды. Цефеиды – класс пульсирующих переменных звёзд с довольно точной зависимостью период-светимость, названный в честь звезды Дельта Цефея. Одной из наиболее известных цефеид является Полярная звезда. Приведенный перечень основных видов (типов) звезд с их краткой характеристикой, разумеется, не исчерпывает всего возможного многообразия звезд во Вселенной.

Внутреннее строение Солнца

Масса Солнца соответствует 99% всей Солнечной системы и равна 2×1027 тонн. Оставшийся процент приходится на планеты, спутники, кометы, астероиды. Диаметр светила равен 109 диаметрам Земли и составляет 1,39 млн. км. От жёлтого карлика до голубой планеты 149,6 млн. км. Это, так называемая, одна астрономическая единица. До центра Млечного пути от Солнца 26 тысяч световых лет. Один оборот по своей орбите светило делает за 200 млн. лет. Вокруг центра галактики оно движется со скоростью 217 км/с.

В центре светила находится ядро. В нём содержится 40% всей солнечной массы. Диаметр его примерно равен 350 тыс. км. Плотность ядра огромная и в 150 раз превышает плотность воды. Температура солнечного ядра составляет около 13,6 млн. градусов по Цельсию. Именно в ядре происходит термоядерная реакция и выделяется энергия, так как молекулы водорода под воздействием температуры и плотности сливаются друг с другом и превращаются в гелий. При этом испускаются нейтрино и гамма-фотоны.

Гамма-фотоны, в процессе своего движения к внешней солнечной оболочке, распадаются на фотоны с более низкой энергией, а нейтрино никак не видоизменяются, проходя через раскалённую массу.

За ядром находится конвективная зона. Температурные режимы в ней значительно ниже и не превышают рядом с ядром 5 млн. градусов по Цельсию. Естественно, при такой температуре ядерный синтез происходить не может. Толщина этой зоны составляет примерно 300 тыс. км. На этом расстоянии температура падает до 6 тыс. градусов по Цельсию. Задача зоны состоит в том, чтобы очень медленно и постепенно передавать к поверхности светила высокую температуру. В конвективной зоне также создаётся магнитное поле жёлтого карлика.

Далее тянется фотосфера. Она и считается поверхностью нашего родного светила. Именно из неё исходит солнечное излучение. На внешнем крае фотосферы температура достигает 4,5 тысячи градусов по Цельсию. От поверхности этого слоя рассчитываются все расстояния, в том числе и расстояние до Земли.

Фотосферу окружает очень тонкая внешняя оболочка. Называется она – хромосфера. Толщина её не превышает 2 тыс. км. Температура в фотосфере увеличивается и достигает 10 тысяч градусов по Цельсию. На некоторых участках она может доходить до 20 тысяч градусов. Плотность в этой зоне сравнительно небольшая, преобладают молекулы водорода. Они придают внешней оболочке красный цвет.


Солнечная корона над поверхностью Солнца

Сверху фотосферу окружает солнечная корона. Плотность слоя очень низкая, а вот температура высокая. Она достигает 1-2 миллионов градусов по Цельсию. Почему это происходит? Существует гипотеза, что причиной является магнитное поле. Благодаря его воздействию, возникают солнечные вспышки. Они и нагревают корону до высоких температур. Сама корона практически не видима из-за низкой плотности. С земли её можно наблюдать во время солнечного затмения, когда Луна полностью загораживает Солнце. Именно в этот момент вокруг спутника Земли и наблюдается свечение, являющееся ничем иным как короной.

Из короны постоянно истекает огромный поток ионизированных частиц. Это солнечный ветер, представляющий собой гелиево-водородную плазму. Частицы несутся со скоростью от 400 до 750 км/с. Они пронизывают всю солнечную систему, а свой путь заканчивают в гелиосфере. Это место, где начинается межзвёздная среда, а скорость ионизированных частиц стремится к нулю.

Солнечный ветер негативно влияет на поверхности планет Солнечной системы. Также негативно он воздействует и на Землю. Но мощное магнитное поле голубой планеты создаёт защитный экран. Именно благодаря ему, солнечный ветер и не может проникнуть на поверхность Земли.

Атмосфера холодных звезд

Еще одним признаком, по которому можно определить местонахождение таких звезд – это наличие метана. Этот газ не может накапливаться на обычных звездах из-за их высоких температур. Однако коричневые карлики относительно холодны, и поэтому метан легко накапливается в их атмосфере. Метановая атмосфера такого типа звезд является очень плотной.

На их поверхности бушуют неистовые ветры, и сюда никогда не проникают лучи других звезд, соответственно, погода никогда не бывает благоприятной. Поэтому на фото коричневые карлики выглядят негостеприимно. Исследователи космоса никогда не приближаются к этим звездам.

Посадить корабль на их поверхность невозможно. Сила их тяжести настолько чудовищна, что астронавты сразу же погибли бы в ее тисках еще до того, как корабль превратился бы в груду металла.

Многие из бурых карликов активно формируют около себя газопылевые облака, из которых, в свою очередь, формируются планеты. Такая планетная система недавно была обнаружена в созвездии Хамелеона.