Kak.manesu.com

Содержание

Атомы и изотопы

Атомы того же элемента содержат одно и то же число протонов. У всех атомов меди 29 протонов. У всех атомов гелия есть 2 протона. Изотопы возникают, когда атомы одного и того же элемента имеют разные массы. Поскольку число протонов элемента не меняется, разница в массе возникает из-за разного числа нейтронов. Медь, например, имеет два изотопа: медь-63 и медь-65. Медь-63 содержит из 29 протонов и ей свойственно массовое число 63. Медь-65 вмещает 29 протонов, а ее массовое число составляет 65. Гелий содержит 2 протона и почти всегда имеет массовое число 4. Очень редко гелий образует изотоп гелий-3, который по-прежнему имеет 2 протона, но имеет массовое число 3.

Один из методов написания формулы для изотопа показывает имя элемента, за которым следует массовое число, например, гелий-4 или He-4. Другая сокращенная идентификация изотопов демонстрирует массовое число в верхнем индексе и атомный номер в нижнем, оба показаны перед атомным символом.

Современные представления о строении атома

Элемент ЕГЭ: 1.1 Современные представления о строении атома. 1.1.1 Строение электронных оболочек атомов элементов первых четырех периодов: s-, р- и d-элементы. Электронная конфигурация атома. Основное и возбуждённое состояние атомов.

Содержание (быстрый переход):

Современные представления о строении атома

Атом – химически неделимая электронейтральная частица, которая состоит из положительно заряженного ядра и движущихся вокруг него отрицательно заряженных электронов.

Атомы не имеют заряда (нейтральны). Если атом присоединяет один или несколько электронов, он приобретает отрицательный заряд и превращается в анион. Если атом теряет один или несколько электронов, он приобретает положительный заряд и превращается в катион. Заряд иона указывают арабской цифрой и знаком после символа атома.

Состав ядра: А = Z + N, где А — массовое число; Z — протонное число (число протонов); N — число нейтронов.

Элементарные частицы

Название Обозначение Масса Заряд
Электрон

ē

≈ 0 -1
Протон

р

1 +1
Нейтрон

n

1

Порядковый номер элемента в периодической системе:

  • Заряд ядра атома
  • Число протонов в ядре атома
  • Число электронов в атоме

Нуклиды – разновидности атомов с фиксированным массовым числом А, числом протонов Z и нейтронов N в ядре.

Основные положения квантовой теории строения атома:

  • Дискретность энергии электрона
  • Двойственная (корпускулярно-волновая) природа электрона
  • Невозможность определения траектории электрона (принцип неопределенности)

Относительная атомная масса элемента (Ar)

Физическая величина, показывающая, во сколько раз средняя масса атомов данного элемента больше 1/12 части массы изотопа углерода 12С.

Орбиталь — пространство вокруг ядра, в котором нахождение электрона наиболее вероятно (вероятность более 90%)

Порядок заполнения орбиталей в основном состоянии

1) Принцип наименьшей энергии. Электроны занимают в первую очередь орбитали, имеющие наименьшую энергию.

2) Принцип Паули. На каждой орбитали могут находиться не более двух электронов, причём спины их противоположны.

3) Правило Хунда. Орбитали заполняются электронами так, чтобы их суммарный спин был максимальным.

Спин электрона — свойство электрона, характеризующее его способность взаимодействовать с магнитным полем. Может принимать два значения (положительное и отрицательное).

Последовательность заполнения орбиталей электронами в основном состоянии:

Энергетические уровни и подуровни

Элементы, у которых идет заполнение s-подуровня, называют s-элементами.
Элементы, у которых заполняется р-подуровень, называют р-элементами.
Элементы, у которых заполняется d-подуровень, называют d-элементами.Элементы, у которых заполняется f-подуровень, называют f-элементами.

Электроны, относящиеся к последнему энергетическому уровню, называют внешними (валентными) электронами.

Строение электронных оболочек атомов первых четырёх периодов

Распределение электронов по орбиталям атома называют электронной конфигурацией атома, или электронной формулой.

Строение элементов четвёртого периода

Электронные конфигурации d5 и d10 обладают повышенной устойчивостью, поэтому в атомах хрома и меди наблюдается «перескок» электрона с 4s-подуровня на 3d-подуровень («провал электрона»).

Основное и возбуждённое состояние атомов

Наиболее устойчивое состояние атома, в котором энергия его электронной оболочки минимальна, называется основным состоянием атома. Любые другие состояния атома называют возбужденными состояниями.

Для возможности перехода атома в возбуждённое состояние необходимо выполнение одновременно двух условий:

  • наличие спаренных электронов;
  • наличие вакантных орбиталей.

Таблица «Современные представления о строении атома. Кратко»

(с) В учебных целях использованы цитаты из пособий: «Химия / Н. Э. Варавва, О. В. Мешкова. — Москва, Эксмо (ЕГЭ. Экспресс-подготовка)» и «Химия : Новый полный справочник для подготовки к ЕГЭ / Е.В. Савинкина. — Москва, Издательство АСТ».

Вы смотрели Справочник по химии «Современные представления о строении атома». Выберите дальнейшее действие:

  • Перейти к Списку конспектов по химии (по классам)
  • Найти конспект в Кодификаторе ОГЭ по химии
  • Найти конспект в Кодификаторе ЕГЭ по химии
  • Конспект урока в 11 классе «Основные сведения о строении атома»

Что такое атом?

Мы знаем, что атом считается самой маленькой частицей, поскольку это фундаментальная единица, из которой состоит материя. Сам этот атом имеет 3 основные субатомные частицы, которые известны как электрон, протон и нейтрон.

Несколько атомов образуют молекулу, а атомы внутри молекулы связаны химическими связями. Электрический заряд атома поддерживает связь между атомами в молекуле. Среди электрона, протона и нейтрона электроны и протоны заряжены отрицательно и положительно соответственно, а нейтроны — нейтрально заряженные частицы.

Электроны и протоны обладают разными свойствами и находятся в разных местах внутри атома. Следовательно, есть основные различия между электроном и протоном, которые мы и обсудим в этой статье.

Ключевые различия между электроном и протоном

  • Электрон — это отрицательно заряженный компонент атома, тогда как протон — положительно заряженный компонент.
  • Электроны находятся вне ядра в орбитальных оболочках. Протоны вместе с нейтронами образуют ядро атома и находятся в центре атомных ядер.
  • Электроны очень подвижны, поскольку они присутствуют в орбитах атомов и могут легко их покидать при подаче внешней энергии. Однако, поскольку протон присутствует в ядре атома, он не подвижен и не может покидать ядро, в отличии от электрона, который находится на орбите.
  • Полярность электронов отрицательна, а протона положительна.
  • Масса протона в 2000 раз больше массы электрона. Как правило, масса электрона составляет 9,1 · 10-31 кг, а масса протона — 1,67 · 10-27 кг.
  • «Добавление и удаление» электронов в атом происходит довольно легко при подаче внешней энергии из-за того, что они находятся на орбитах, а не в ядре. Добавление и удаление протонов — задача не из легких и требует большого количества энергии.

Открытие протона

Ученик Дж. Дж. Томсона, новозеландский физик Эрнест Резерфорд, считается ученым, открывшим протон. Он в начале XX века предложил планетарную модель строения атома, в которой основная масса находится в центре. К такой гипотезе Резерфорд пришел после анализа экспериментов, в которых ученые Ганс Гейгер и Эрнест Марсден бомбардировали альфа-частицами пластинку из золота.

В 1918 году Резерфорд провел самостоятельно эксперименты по взаимодействию альфа-частиц с азотом. В этих экспериментах ученый наблюдал испускание ядер атома водорода и пришел к заключению, что они являются «кирпичиками» для всех других ядер. Так Резерфорд открыл протон. Впоследствии было установлено, что ядерная масса значительно превосходила суммарную массу всех протонов атома, поэтому Резерфорд предположил, что в ядре атома существует еще некоторая тяжелая частица, не обладающая зарядом. Этой частицей стал нейтрон, который был открыт позже.

Ядерные Силы

Возникает вопрос – если протоны обеспечивают положительный заряд ядра, то почему существуют ядра элементов с зарядом больше единицы ? Ведь протоны, заряженные одинаково, должны отталкиваться друг от друга!

Нуклоны удерживает вместе особое Сильное (или ядерное) взаимодействие. Особенность ядерного взаимодействия в том, что его переносчики (глюоны и составленные из них пионы) – не только переносят сильное взаимодействие, но и сами в нем участвуют. Поэтому они не могут далеко удаляться друг от друга, и радиус действия ядерных сил не превышает размеры ядер. Эти силы значительно больше кулоновских сил отталкивания, и поэтому ядра, содержащие много положительных протонов стабильны.

Рис. 2. Ядерные силы.

Эти же силы определяют стабильность нейтрона в составе ядер. Свободный нейтрон – это нестабильная частица с периодом полураспада около 600 сек. Ядерные взаимодействия делают распад нейтрона в ядрах с малым их числом $N$ энергетически невыгодным.

Количество протонов

Расположение элементов в периодической таблице предоставляет важную информацию для определения количества протонов, нейтронов и электронов в атомах. В современной таблице элементы расположены в соответствии с возрастанием числа протонов в них. Первый элемент в таблице, водород, имеет один протон. Последний элемент (по крайней мере, на данный момент) в таблице, Оганессон или Унуноктиум, содержит 118 протонов.

Атомный номер определяет количество протонов в любом атоме этого элемента. Медь с атомным номером 29 состоит из 29 протонов. Определение атомного номера элемента показывает количество протонов.

Современные представления о строении атома

Прежде чем переходить к ответу на вопрос, кто открыл нейтроны, протоны и электроны, рассмотрим, что с современной точки зрения представляет собой атом.

Каждое вещество, которое мы видим каждый день, состоит из молекул. Они же образованы атомами. Хотя количество различных молекул достаточно велико, все они образованы ограниченным количеством различных атомов (порядка 100). Каждый атом имеет ядро, состоящее из протонов и нейтронов, и вращающиеся вокруг ядра электроны, электрический заряд которых является отрицательным и противоположен по знаку заряду ядра.

Если применять эти представления к воде, то следует сказать, что в капле воды диаметром 4 мм находится приблизительно 1015 молекул. Молекула воды состоит из 3 атомов: 2 атома водорода и 1 атом кислорода. Атом кислорода состоит из ядра, образованного 8 протонами и 8 нейтронами, и электронной оболочки, состоящей из 8 электронов.

Антипротон

CPT-симметрия накладывает сильные ограничения на относительные свойства частиц и античастиц и, следовательно, открыта для строгих испытаний. Например, заряды протона и антипротона должны в сумме равняться нулю. Это равенство было проверено до одной части в10 8 . Равенство их масс также было проверено лучше, чем одна часть в10 8 . Удерживая антипротоны в ловушке Пеннинга , было проверено равенство отношения заряда к массе протонов и антипротонов с точностью до одной части.6 × 10 9 . Магнитный момент антипротонов был измерен с погрешностью8 × 10 −3 ядерных магнетонов Бора , и оказывается равным протону и противоположным ему.

Энергия атомного ядра

После того, как нейтроны были открыты, ядерная физика, а также химия и технологии сделали огромный шаг вперед. Перед человеком открылся новый, практически неисчерпаемый и в то же время опасный источник энергии.

Начало ядерной эры человечество ощутило на себе в 1945 году, когда США испытало в действии разрушительную первую ядерную бомбу «Тринити», сбросив ее на японские города Хиросима и Нагасаки.

Первое использование ядерной энергии в мирных целях следует отнести к середине 50-х годов XX века, когда в 1953 году был построен первый ядерный реактор, который заменил дизельный двигатель на американской подводной лодке «Наутилус».

Изотоп — это… Что такое Изотоп?

Изото́пы (от греч. ισος — «равный», «одинаковый», и τόπος — «место») — разновидности атомов (и ядер) одного химического элемента с разным количеством нейтронов в ядре. Название связано с тем, что изотопы находятся в одном и том же месте (в одной клетке) таблицы Менделеева. Химические свойства атома зависят практически только от строения электронной оболочки, которая, в свою очередь, определяется в основном зарядом ядра Z (то есть количеством протонов в нём) и почти не зависит от его массового числа A (то есть суммарного числа протонов Z и нейтронов N). Все изотопы одного элемента имеют одинаковый заряд ядра, отличаясь лишь числом нейтронов. Обычно изотоп обозначается символом химического элемента, к которому он относится, с добавлением верхнего левого индекса, означающего массовое число (например, 12C, 222Rn). Можно также написать название элемента с добавлением через дефис массового числа (например, углерод-12, радон-222). Некоторые изотопы имеют традиционные собственные названия (например, дейтерий, актинон).

Терминология

Основная позиция ИЮПАК состоит в том, что правильным термином в единственном числе для обозначения атомов (или ядер) одного химического элемента с одинаковой атомной массой является нуклид, а термин изотопы допускается применять для обозначения совокупности нуклидов одного элемента. Термин изотопы был предложен и применялся изначально во множественном числе, поскольку для сравнения необходимо минимум две разновидности атомов. В дальнейшем в практику широко вошло также употребление термина в единственном числе — изотоп. Кроме того, термин во множественном числе часто применяется для обозначения любой совокупности нуклидов, а не только одного элемента, что также некорректно. В настоящее время позиции международных научных организаций не приведены к единообразию и термин изотоп продолжает широко применяться, в том числе и в официальных материалах различных подразделений ИЮПАК и ИЮПАП. Это один из примеров того, как смысл термина, изначально в него заложенный, перестаёт соответствовать понятию, для обозначения которого этот термин используется (другой хрестоматийный пример — атом, который, в противоречии с названием, не является неделимым).

История открытия изотопов

Первое доказательство того, что вещества, имеющие одинаковое химическое поведение, могут иметь различные физические свойства, было получено при исследовании радиоактивных превращений атомов тяжёлых элементов. В 1906—07 выяснилось, что продукт радиоактивного распада урана — ионий и продукт радиоактивного распада тория — радиоторий, имеют те же химические свойства, что и торий, но отличаются от него атомной массой и характеристиками радиоактивного распада. Было обнаружено позднее, что у всех трёх продуктов одинаковы оптические и рентгеновские спектры. Такие вещества, идентичные по химическим свойствам, но различные по массе атомов и некоторым физическим свойствам, по предложению английского учёного Ф. Содди, стали называть изотопами.

Изотопы в природе

Считается, что изотопный состав элементов на Земле одинаков во всех материалах. Некоторые физические процессы в природе приводят к нарушению изотопного состава элементов (природное фракционирование изотопов, характерное для лёгких элементов, а также изотопные сдвиги при распаде природных долгоживущих изотопов). Постепенное накопление в минералах ядер — продуктов распада некоторых долгоживущих нуклидов используется в ядерной геохронологии.

Применение изотопов человеком

В технологической деятельности люди научились изменять изотопный состав элементов для получения каких-либо специфических свойств материалов. Например, 235U способен к цепной реакции деления тепловыми нейтронами и может использоваться в качестве топлива для ядерных реакторов или ядерного оружия. Однако в природном уране лишь 0,72 % этого нуклида, тогда как цепная реакция практически осуществима лишь при содержании 235U не менее 3 %. В связи с близостью физико-химических свойств изотопов тяжёлых элементов, процедура изотопного обогащения урана является крайне сложной технологической задачей, которая доступна лишь десятку государств в мире. Во многих отраслях науки и техники (например, в радиоиммунном анализе) используются изотопные метки.

Элементарные частицы

Что же происходит с телами при электризации? Представьте себе два одинаковых металлических шара, но только один из них заряжен отрицательно, а другой не заряжен (см. рис. 10).

Рис. 10. Заряженный и незаряженный шары

Известно, что все тела состоят из атомов, а те, в свою очередь, состоят из протонов, нейтронов, электронов (см. рис. 11).

Рис. 11. Атом

Протоны заряжены положительно, электроны – отрицательно. Будем называть их элементарными зарядами, то есть неделимыми. Так вот, в большинстве случаев в атоме количество протонов равняется количеству электронов и получается, что они полностью компенсируют друг друга и в целом атом нейтрален

Важно понимать, что в атоме заряды никуда не исчезают, там по-прежнему есть положительные и отрицательные частицы, просто их действие на далекие предметы полностью компенсируется (см. рис. 12)

12).

Рис. 12. Действие частиц компенсировано

А вот в шаре, заряженном отрицательно, электронов больше, чем протонов, поэтому в целом в теле количество отрицательных элементарных зарядов больше, чем количество положительных элементарных зарядов, и тело заряжено отрицательно (см. рис. 13).

Рис. 13. Количество электронов в заряженном шаре

Заряд макроскопического тела (состоящего из большого количества атомов) – это величина, показывающая разность между положительными и отрицательными зарядами в теле. Если это количество одинаково, то заряд нулевой. Величина элементарного заряда известна и равна . Соответственно, заряд протона договорились считать положительным , а заряд электрона – отрицательным .

Что же происходит при трении тел друг о друга, например пластика о шерсть? Электроны с внешних оболочек атомов, входящих в состав шерсти, «перепрыгивают» на пластмассу (см. рис. 14).

Рис. 14. Движение электронов при трении

Получается, что в шерсти становится меньше отрицательных электронов и она заряжается положительно, а пластмасса – отрицательно, так как в ней появляется избыточное количество электронов. Можно даже сказать: если при контакте заряд одного тела увеличивается, то у другого уменьшается.

Что касается искр между людьми, то это происходит, если хотя бы один человек «заряжен» (допустим, человек ходил по шерстяному ковру, при трении подошвами по нему), и если другой человек не заряжен также, то заряд будет перетекать с одного человека на другого, иногда это перетекание может быть даже по воздуху, в таком случае и появляется искра. Стоит отметить, что искра появляется только благодаря движению электронов, протоны находятся в ядрах атомов, они менее подвижны и не могут покидать атомов отличие от электронов.

Зарядить тело можно и без контакта – через влияние электрическим полем. Представьте себе незаряженный шар, к которому подносят положительно заряженную палочку – разноименные заряды притягиваются, поэтому электроны, которые были в шаре, притянутся к положительно заряженной палочке и скопятся в той части шара, которая ближе к ней (см. рис. 15).

Рис. 15. Влияние положительно заряженной палочки на электроны

Почему незаряженные частицы фольги притягиваются к заряженной расческе?

Оказывается, незаряженный кусочек фольги будет притягиваться к заряженной расческе. Как же так? В целом кусочек фольги электрически нейтрален. Давайте посмотрим, что произойдет, если мы поднесем отрицательно заряженную расческу к кусочку фольги – отрицательно заряженная расческа притягивает к себе положительный заряд и отталкивает отрицательный. Поэтому электроны отодвинутся дальше от границы, а сторона, которая находится ближе к расческе, будет заряжена положительно (см. рис. 16) и притяжение будет сильнее, чем отталкивание, потому что положительная часть фольги находится ближе к расческе.

Рис. 16. Расположение электронов в фольге при поднесении расчески

Открытие электрона

До 1897 года человечество считало атом неделимым, когда британский физик Джозеф Джон Томсон открыл электрон в своих экспериментах с катодными лучами. Прибор, который использовал Томсон, представлял собой герметичную трубку из стекла, в которую были помещены два катода, и был выкачан воздух. Ученый обнаружил, что испускаемые катодные лучи отклоняются от пути своего распространения, если на них воздействовать электрическим полем. В итоге ученый установил, что образующие эти лучи частицы должны иметь отрицательный заряд. Впоследствии эти частицы получили название электроны.

Открытие нейтрона, протона, электрона

Подробности
Просмотров: 536

Открытие электрона

Электрон был открыт английским физиком Дж. Томсоном в 1897 г.
Условное обозначение электрона:

— отрицательно заряженная элементарная частица
— обладает наименьшим в природе зарядом = 1э.э.з. = 1,6 х 10-19 Кл
— масса электрона по сравнению с протоном ничтожнао мала и составляет 9,1 х 10-28 г
— электрон стабилен
— не имеется никаких данных о внутренней структуре электрона/

Для справки:
Есть элементарные частицы «кварки», обладающие дробным зарядом ( 1э.э.з/3 и 2э.э.з./3 ) Однако, в свободном состоянии эти частицы не существуют.

Открытие протона

В 1913 г. Э. Резерфорд выдвинул гипотезу, что одной из частиц , входящих в ядро атома любого химического элемента должно быть ядро атома водорода, т.к. было известно, что массы атомов химических элементов превышают массу атома водорода в целое число раз.
Резерфорд поставил опыт по исследованию взаимодействия альфа-частиц с ядрами атома азота. В результате взаимодействия из ядра атома азота вылетала частица, которую Резерфорд назвал протоном и предположил, что это ядро атома водорода.
Позднее с помощью камеры Вильсона было доказано, что эта частица действительно является ядром атома водорода.
Условное обозначение протона:

— масса протона равна 1а.е.м. и в 1836 раз больше массы электрона
— заряд протона является положительным и равен 1э.э.з. , т.е. равен по модулю заряду электрона
— протон стабилен
— физическое представление: напоминает облако с размытой границей, состоящее из рождающихся и аннигилирующих частиц

Открытие нейтрона

В 1920 г. Резерфорд высказал предположение, что должна существовать частица массой, равной массе протона, но не имеющая электрического заряда. Однако, обнаружить такую частицу Резерфорду не удалось.

Английский ученый Дж. Чедвик выдвинул гипотезу о существовании нейтральных частиц, близких по размерам и массе к протонам. Эти частицы он назвал нейтронами.
При прохождении через вещество нейтроны не теряют энергию на ионизацию атомов вещества, поэтому имеют огромную проникающую способность. Масса нейтрона чуть больше массы протона (примерно на 2,5 массы электрона).
Условное обозначение нейтрона:

Свойства нейтрона:

В среднем за 15 минут свободный нейтрон распадается на протон, электрон и электронное антинейтрино — частицу, не имеющую ни заряда, ни массы. Нейтроны могут быть использованы как «снаряды» в реакциях превращения одних ядер в другие.

Следующая страница «Строение ядра атома»

Назад в раздел

Вспомни тему «Атомная физика» за 9 класс:

Радиоактивность —
Радиоактивные превращения —
Состав атомного ядра. Ядерные силы —
Энергия связи. Дефект масс —
Деление ядер урана —
Ядерная цепная реакция —
Ядерный реактор —
Термоядерная реакция

Ядерные силы: строение ядра от простейшего к большему

Резюмируя все вышесказанное, можно отметить:

  • сильное ядерное взаимодействие гораздо, гораздо слабее, чем электромагнетизм на расстояниях, значительно больших, чем размер типичного ядра, так что мы не сталкиваемся с ним в повседневной жизни; но
  • на коротких расстояниях, сравнимых с ядром, оно становится гораздо сильнее — сила притяжения (при условии, что расстояние не слишком короткое), способна преодолеть электрическое отталкивание между протонами.

Итак, эта сила имеет значение только на расстояниях, сравнимых с размерами ядра. На рисунке ниже показан вид ее зависимости от расстояния между нуклонами.

Большие ядра удерживаются вместе с помощью более или менее той же силы, что держит дейтрон вместе, но детали процесса усложняются, так что их непросто описать. Они также не в полной мере понятны. Хотя основные очертания физики ядра были хорошо изучены в течение десятилетий, многие важные детали все еще активно исследуются.

Внутри ядра действуют:

1) электрические силы отталкивания между протонами и

2) ядерные силы между нуклонами (отталкивания — на малых и притяжения — на больших расстояниях).

Установлено, что ядерные силы одинаковы для нуклонов обоих сортов. Ядерное притяжение между протонами значительно превосходит электрическое отталкивание, вследствие чего протон прочно удерживается в составе ядра.

Ядро окружено потенциальным барьером, обусловленным ядерными силами. Выход из ядра нуклона и системы нуклонов (например, альфа-частиц) возможен либо путем «туннельного эффекта», либо при получении энергии извне. В первом случае происходит спонтанный радиоактивный распад ядра, во втором — вынужденная ядерная реакция. Оба процесса позволяют вынести некоторые суждения о размерах ядра. Ценные сведения о протяженности потенциального барьера вокруг ядер получены при изучении рассеяния ядрами различных бомбардирующих частиц — электронов, протонов, нейтронов и др.

Исследования показали, что ядерные силы притяжения между нуклонами очень быстро убывают с увеличением расстояния между ними. Средний радиус действия ядерных сил, который можно трактовать так же, как некоторый условный («эффективный») размер ядра, на основании экспериментальных данных выражается оценочной формулой

Если полагать, что ядра с большим числом нуклонов состоят из сердцевины, где частицы равномерно распределены по объему, и сферической оболочки, в которой плотность частиц убывает к границам ядра до нуля, то в этом случае

Эти формулы показывают, что «эффективный» объем ядра прямо пропорционален числу нуклонов поэтому нуклоны во всех ядрах упакованы в среднем с почти одинаковой плотностью.

Плотность ядер весьма велика; например, у ядра с масса радиус

Состояние нуклона в различных местах внутри ядра можно характеризовать величиной энергии которую нужно затратить, чтобы извлечь этот нуклон из ядра. Она называется энергией связи данного нуклона в ядре. В общем случае эта энергия различна для протонов и нейтронов и может зависеть от того, в каком месте объема ядра находится данный нуклон.

Взаимодействие нуклонов в ядре можно сопоставить с аналогичным взаимодействием атомов в кристаллических решетках металлов, где

существенную роль играют электроны как «передатчики взаимодействия».

Различие заключается в том, что в ядрах «передатчиками взаимодействия» между нуклонами являются более тяжелые частицы — пи-мезоны (или пионы), масса которых в 273 раза больше массы электрона. Полагают, что нуклоны непрерывно порождают и поглощают пи-мезоны по схеме

так что каждый нуклон окружен облаком виртуальных пи-мезонов. Внутри ядра, где частицы находятся на относительно малых расстояниях друг от друга, пи-мезонное облако активно участвует в ядерных процессах, обусловливая взаимодействие и взаимные превращения нуклонов.

Что такое нейтроны

Как уже упоминалось выше, нейтроны находятся вместе с протонами в ядре. Однако нейтроны не взимается частицы. Следовательно, он может удобно делить пространство с протонами без каких-либо сил отталкивания. Например, если бы нейтроны были заряжены отрицательно, они бы притягивались к протонам, или, если бы они были заряжены положительно, возникла бы отталкивающая сила. Нейтроны весят немного выше, чем протоны. Тем не менее, это примерно считается масса одной атомной единицы массы, Количество нейтронов, вместе с числом протонов, образуют атомное массовое число. Количество нейтронов и протонов внутри ядра не одинаково. Нейтрон может быть обозначен символом ‘N. » Нейтроны также не участвуют в химических реакциях и подвергаются только ядерным реакциям.

Что такое протоны

Протоны находятся в ядре атома, и они находятся вместе с нейтронами. Протон был открыт Эрнестом Резерфордом, который утверждал, что большая часть пространства атома пуста, а масса была сосредоточена только в небольшой плотной области внутри атома, называемого ядром. Протоны положительно заряженный, Заряд в этом случае определяется величиной кулоновского заряда электрона. Заряд протона равен заряду электрона и, следовательно, может быть выражен как 1e. (1e = 1,602 * 10-19 С). Атомное ядро ​​остается положительно заряженным благодаря наличию протонов.

Протоны тяжелы, и у них есть масса 1.672 * 10-27 кг, Как уже упоминалось выше, протоны легко вносят вклад в массу атома. Протоны вместе с нейтронами называются «нуклонами». В каждом атоме присутствует один или несколько протонов. Число протонов отличается в каждом атоме и образует идентичность атома. Когда элементы группируются в периодической таблице, число протонов используется в качестве атомного номера этого элемента.

Протон символизируется как ‘п. Протоны не участвуют в химических реакциях, а только подвергаются ядерным реакциям.

Заключение

Эта тема переплела два ответвления – физику и химию, показывая всю многогранность нашей природы и взаимосвязь этих наук. Как мы поняли, некоторые моменты до сих пор непонятны нам, но ученые не останавливаются на достигнутом, продвигаясь дальше. Данный предмет обсуждения, находящийся в этой работе – базовые понятия, написанные доступным языком.

Этот материал разбирал такие маленькие, но важные для нас моменты – атомы, которых мы не видим, хотя они влияют на все вокруг, даже на нас самих.

Чтобы лучше усвоить материал, здесь собраны ключевые моменты из текста, требующие особого внимания:

  1. Вещества бывают простыми и сложными;
  2. Атомы – это неразлагающиеся мелкие частицы;
  3. Чем выше порядковый номер у элемента, тем больше его атомный вес;
  4. Изотопы – химические элементы под одним порядковым номером, но с разной массой ядер. Есть у любого элемента;
  5. У атомов есть частицы (элементарные): протоны, нейтроны, электроны;
  6. Протоны – положительно заряженные частицы, находящиеся в ядре;
  7. Нейтроны – беззарядные частицы;
  8. Электроны – частицы, с самым маленьким отрицательным электрическим зарядом;
  9. Значение протона равно значению электрона;
  10. Чем быстрее скорость электрона, тем его масса больше;
  11. Движение электрона волнообразное, упорядоченное, при этом он вращается;
  12. Интерференция электронов – слияние нескольких волн электронов;
  13. Дифракция электронов – волновое обтекание области места, через которое проходит ток;
  14. Порядковый номер – это заряд ядра;
  15. У каждой частицы есть электрическое поле, позволяющее взаимодействовать с другими частицами;
  16. Фотон – переносчик электромагнитного “общения” частиц;
  17. Ядерное поле – вид материи, который состоит из протонов, нейтронов и мезонов.
  18. Мезон – частица, позволяющая протонам и нейтронам контактировать, а также удерживает их внутри ядра ядерной силой;
  19. Ядерная сила – сила влияния протона и нейтрона друг на друга;
  20. Ядерные силы могут из протонов нейтроны и наоборот при помощи мезонов;
  21. Ядерные силы мощнее электрических;
  22. Протон, нейтрон и электрон называются элементарными, потому что их невозможно разложить на более простые частицы, но они могут становиться друг другом и образовываться друг из друга;
  23. Если электрон отдалится от ядра, то он ненадолго образует энергию, но все равно вернется на свое место, тоже образовывая энергию, переходящую в излучение;
  24. Дозволенные слои – орбиты, на которые электрон может переходить;
  25. Дейтон – объединение протона и нейтрона в ядре;
  26. Легкие элементы считаются лучше, потому что их ядра прочнее из-за одинакового числа частиц;
  27. Число электронных слоев = номер периода;
  28. У каждой электронной оболочки есть определенное конечное число электронов, которое оно способно вместить;
  29. Те элементы, у которых оболочки не полностью заполнены, лучше вступают в контакт с другими элементами;
  30. Ион – заряженная молекула.
  31. Катион – положительный ион.
  32. Анион – отрицательный ион;
  33. Степень окисления – заряд элемента, который вычислен путем того, что в соединении ковалентная полярная связь превратилась в ионную;
  34. Есть элементы, чья степень окисления постоянна, а есть те, у кого она изменяется;
  35. Если сложить все степени окисления в соединении, то всё будет равно нулю.

Короткое, но познавательное видео про элементарные частицы: