Разница между основным состоянием и возбужденным состоянием

Цинк, Zn

Латинское название Zincum, химический символ Zn. Элемент 4 периода, расположен во II группе, В-подгруппе. Порядковый номер 30. Масса — 65,37. Строение электронных оболочек: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 (в основном состоянии). Валентность и степень окисления: II(+) и +2 (соответственно).

Способы получения в промышленности:

  • Восстановление углеродом при нагревании: ZnO+ C → CO↑ + Zn.
  • Гидрометаллургия: ZnO + H2SO4 → ZnSO4+ H2O; ZnSO4+ Fe → FeSO4+ Zn↓.
  • Электролиз: цинк восстанавливается на катоде Zn 2+ + 2H + + 4ē → Zn↓ + H2.

Цинк — металл серебристо-серого цвета (рис. 3). Твердый, проводит тепло и электричество. Окисляется кислородом при нагревании. Не взаимодействует с бором, углеродом, кремнием, азотом. В воде не растворяется, но при сильном нагревании реагирует с водяным паром с образованием оксида цинка и выделением водорода. Реагирует с кислотами, кроме азотной, вытесняет водород. Вытесняет металлы, расположенные в ряду активности правее, из растворов их солей.

Характеристика соединений

Классы веществ

Названия и формулы

Цинк находит применение как защитный материал для предотвращения ржавчины (оцинковки) изделий из стали, железа. Металл используется в строительстве, производстве бытовой техники и для других целей.

Электронная конфигурация ионов

Электронная конфигурация ионов составляется по тем же принципам. Нужно учитывать изменения количества электронов на внешнем энергетическом уровне.

Атом электронейтрален, то есть сколько протонов ядре, столько же электронов в атоме. Если атом принимает электроны, он становится отрицательно заряженным ионом (анионом), если отдаёт электроны – положительно заряженным ионом (катионом).

Атому легче всего отдать электроны внешнего энергетического уровня, «чужие» электроны он тоже примет на внешний энергетический уровень. На внешнем энергетическом уровне не может находиться более 8 электронов. Теория «октета» была предложена в 1916 году Гилбертом Ньютоном Льюисом и Вальтером Косселем

Атом «стремится» добрать электроны на внешний уровень или избавиться от них, поэтому и становится ионом. Полное заполнение s- и p-подуровней внешнего уровня придаёт атому стабильность. Только атом гелия имеет на единственном внешнем энергетическом уровне 2 электрона, а не 8, потому что первый энергетический уровень состоит только из одной s-орбитали.

Количество электронов на внешнем энергетическом уровне определяется по таблице Менделеева. У элементов главных подгрупп номер группы – это и есть количество электронов на внешнем уровне. У элементов побочных подгрупп количество электронов на внешнем уровне не больше двух.

Ссылки [ править ]

  1. ^ Хере, Уоррен Дж. (2003). Руководство по молекулярной механике и квантово-химическим расчетам . Ирвин, Калифорния: ISBN Wavefunction, Inc. 1-890661-06-6.
  2. ^ Glaesemann, Kurt R .; Говинд, Ниранджан; Кришнамурти, Шрирам; Ковальский, Кароль (2010). «Исследования EOMCC, MRPT и TDDFT процессов переноса заряда в соединениях со смешанной валентностью: применение к молекуле спиро». Журнал физической химии . 114 (33): 8764–8771. Bibcode2010JPCA..114.8764G . DOI10.1021 / jp101761d . PMID 20540550 .
  3. ^ Dreuw, Андреас; Хед-Гордон, Мартин (2005). «Одноэлементные ab initio методы для расчета возбужденных состояний больших молекул». Химические обзоры . 105 (11): 4009–37. DOI10.1021 / cr0505627 . PMID 16277369 .
  4. ^ Ноулз, Питер Дж .; Вернер, Ханс-Иоахим (1992). «Внутренне сжатые вычисления взаимодействия многоконфигурации и эталонной конфигурации для возбужденных состояний». Теоретика Chimica Acta . 84 : 95. DOI10.1007 / BF01117405 .
  5. ^ Foresman, Джеймс Б.; Хед-Гордон, Мартин; Pople, John A .; Фриш, Майкл Дж. (1992). «К систематической теории молекулярных орбиталей возбужденных состояний». Журнал физической химии . 96 : 135. DOI10.1021 / j100180a030 .
  6. ^ Glaesemann, Kurt R .; Гордон, Марк С .; Накано, Харуюки (1999). «Исследование FeCO + с коррелированными волновыми функциями». Физическая химия Химическая физика . 1 (6): 967–975. Bibcode1999PCCP …. 1..967G . DOI10.1039 / a808518h .
  7. ^ {url = https://www.rp-photonics.com/excited_state_absorption.html}
  8. ^ Долан, Гиора; Гольдшмидт, Шмуэль Р. (1976). «Новый метод измерения абсолютного сечения поглощения: возбужденный синглет-синглетный спектр поглощения родамином-6Ж». Письма по химической физике . 39 (2): 320–322. Bibcode1976CPL …. 39..320D . DOI10.1016 / 0009-2614 (76) 80085-1 .

Медь, Cu

Латинское название — Cuprum, символ — Cu. Относительная атомная масса — 63,5. Медь находится в 4 периоде, I B-группе ПСХЭ. Порядковый номер — 29.

Распределение электронов по уровням и подуровням характеризует следующая электронная формула: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 . В возбужденном состоянии на 4s уровень и подуровень «проскакивает» один d-электрон. Атом получает более устойчивую конфигурацию электронных оболочек.

Типичные значения валентностей и степеней окисления в соединениях: I(+), II(+), 0, +1, +2 соответственно. Заряд катиона 2+.

Способ получения меди в лаборатории — восстановление из оксида с помощью водорода при нагревании.

  • Восстановление водородом. Схема процесса: Cu +2 O + H2 → Cu 0 + H2O.
  • Металлотермия. Происходит реакция обмена CuO + H2SO4 → CuSO4 + H2O. далее идет вытеснение меди железом CuSO4 + Fe → FeSO4 + Cu↓.
  • Электролиз водного раствора сульфата меди. На катоде происходит восстановление Cu 2+ + 2ē → Cu 0 ; на аноде — окисление 2H2O – 4ē → 4H + + O2↑.

Описание металла — простого вещества

  • золотисто-красный цвет (рис. 2);
  • металлический блеск;
  • пластичен, легко вытягивается в проволоку и прокатывается в листы;
  • тепло- и электропроводность высокие.

Химические свойства:

  • Медь в ряду активности находится после водорода, это инертный металл.
  • Не взаимодействует с водой.
  • Не реагирует при обычных условиях с водородом, углеродом, кремнием, азотом, с растворами соляной и серной кислот, растворами щелочей.
  • Взаимодействует с концентрированными растворами серной и азотной кислот.

Важнейшие соединения меди

Класс веществ

Название соединения

Характер свойств

Амфотерный (преобладают основные свойства).

Электронные формулы атомов

Состояние электрона в атоме описывается с помощью квантово-механической модели – электронного облака, плотность соответствующих участков которого пропорциональна вероятности нахождения электрона. Обычно под электронным облаком понимают область околоядерного пространства, которая охватывает примерно 90% электронного облака. Эта область пространства называется также орбиталью.

Атомные орбитали образуют энергетический подуровень. Орбиталям и подуровням присвоены буквенные обозначения. Каждый подуровень имеет определенное число атомных орбиталей. Если атомную орбиталь изобразить в виде магнитно-квантовой ячейки, то атомные орбитали, находящиеся на подуровнях, можно представить следующим образом:

энергетический подуровень s p d f
атомные орбитали .

На каждой атомной орбитали могут находиться одновременно не более двух электронов, различающихся спином (принцип Паули). Это различие обозначается стрелками ¯­.

Зная, что на s-подуровне одна s-орбиталь, на р-подуровне три р-орбитали, на d-подуровне пять d-орбиталей, на f-подуровне семь f-орбиталей, можно найти максимальное количество электронов на каждом подуровне и уровне.

Так, на s-подуровне, начиная с первого энергетического уровня, 2 электрона; на р-подуровне, начиная со второго энергетического уровня, 6 электронов; на d-подуровне, начиная с третьего энергетического уровня, 10 электронов; на f-подуровне, начиная с четвертого энергетического уровня, 14 электронов. Электроны на s-, p-, d-, f-подуровнях называются соответственно s-, р-, d-, f-электронами.

Согласно принципу наименьшей энергии, последовательное заполнение энергетических подуровней электронами происходит таким образом, что каждый электрон в атоме занимает подуровень с наиболее низкой энергией, отвечающей его прочной связи с ядром. Изменение энергии подуровней может быть представлено в виде ряда Клечковского или шкалы энергии:

Сублимация и десублимация

Мы уже рассказали про такие процессы, как сублимация и десублимация.

  • Переход из твердого состояния в газообразное, минуя жидкое — сублимация (возгонка);
  • Переход из газообразного состояния в твердое, минуя жидкое — десублимация.

Примерчики из жизни

Про белье. Попробуйте повесить белье сушиться на улицу в мороз. Поскольку вода замерзает из-за низких температур, белье должно вернуться домой в виде большого айсберга, но этого не происходит — оно возвращается абсолютно сухим. В данном процессе произошла возгонка молекул воды (сублимация).

Про принтеры. Цветные принтеры (только не лазерные) печатают путем сублимации. Вот как это работает: частицы краски быстро переходят из твердого состояния в газообразное и оседают на бумаге — так получается цветная картинка.

Рисуночки на окнах. Если вы решите проехаться на автобусе в холодную погоду — увидете на стеклах чудесные узоры. Из-за огромной разницы температур между улицей и автобусом, мы можем наблюдать процесс десублимации в виде красивых рисунков на стеклах. Иней образуется похожим способом — резкое похолодание приводит к десублимации воздуха.

Электронное строение атома меди

Атом меди состоит из положительно заряженного ядра (+29), внутри которого есть 29 протонов и 35 нейтронов, а вокруг, по четырем орбитам движутся 29 электронов.

Рис.1. Схематическое строение атома меди.

Распределение электронов по орбиталям выглядит следующим образом:

Состояние считается более энергетически выгодным, если на d-подуровне находится 5 или 10 электронов, поэтому в случае меди мы наблюдаем проскок: один электрон s-подуровня переходит на d-подуровень для того, чтобы положение было устойчивым.

Энергетическая диаграмма основного состояния принимает следующий вид:

Основное состояние — атом

Основное состояние атома следует выбирать по правилам Хунда.

Основное состояние атома имеет спин, равный нулю, и положительную четность. Спин первого возбужденного состояния равен единице, а четность неизвестна. Рассмотрим фотоны, которые испускаются этими атомами при переходе в основное состояние.

Основное состояние атома может быть описано слейтеров-ским определителем, построенным из таких водородоподобных орбиталей. Орбитали следует выбирать так, чтобы минимизировать полную энергию.

Основное состояние атома обозначается прописной буквой латинского алфавита, соответствующей значению L. Аналогично обозначаются термы основного состояния двух — и многозарядных ионов.

Основное состояние атома хлора представляет собой терм Ра / 2, и, следовательно, / 3 / а. Следовательно, влияние этого уровня на величину суммы состояний может быть заметно, начиная с температуры в 250 К и выше.

Основное состояние атомов кислорода является орбитально-вырожденным. Поэтому спин должен сильно взаимодействовать с окружением, и резонансные пики становятся настолько широкими, что их уже невозможно обнаружить.

Основное состояние атомов серы есть 3Р2, а состояния 3Р и 3Ро лежат только на 1 136 и 1 639 ккал / г-атом выше основного состояния. Два нижних синглетных состояния 4.2 и 5о имеют энергию 2 640 и 6 339 ккал / г-атом соответственно.

Основные состояния атомов элементов второго и третьего периодов либо просто являются состояниями с заполненными оболочками, либо представляются одподетерминантными функциями с максимальным спином. Эта теория детально изложена в работе , и мы будем считать, что она известна читателю. Краткое ее резюме, предпосланное в качестве введения к теории, развиваемой для случая незаполненных оболочек, можно найти в разд. Рассмотрение возбужденных состояний атомов требует как раз такой новой теории с учетом незаполненных оболочек.

Основные состояния атомов элементов второго и третьего периодов либо просто являются состояниями с заполненными оболочками, либо представляются однодетерминантными функциями с максимальным спином. Эта теория детально изложена в работе , и мы будем считать, что она известна читателю. Краткое ее резюме, предпосланное в качестве введения к теории, развиваемой для случая незаполненных оболочек, можно найти в разд. Рассмотрение возбужденных состояний атомов требует как раз такой новой теории с учетом незаполненных оболочек.

Обозначьте основное состояние атома, как принято в спектроскопии.

Энергия основного состояния атома обычно принимается равной нулю. Если желательно показать тонкую структуру, отдельные фрагменты диаграммы можно увеличить.

Конфигурация основного состояния атома строится путем последовательного размещения электронов в одноэлектронных состояниях с наинизшей энергией, удовлетворяющих принципу Паули.

Для основного состояния атома это означает, что орбитали с наинизшей энергией заняты каждая двумя электронами или что каждая такая спин-орбиталь занята одним электроном.

В основном состоянии атомов электроны заполняют, в согласии с принципом Паули, нижние энергетические состояния. У перечисленных атомов с заполненными оболочками суммарный орбитальный момент и суммарный спин равны нулю.

В основном состоянии атома электроны заполняют атомные орбитали с наименьшими энергиями ( принцип заполнения) так, чтобы при этом выполнялся принцип Паули. Орбиталям пр отвечает более, высокая энергия, чем орбиталям ns, но намного более низкая, чем орбиталям ( n 1) — Электроны на nd — орбита-лях имеют примерно такую же энергию, как электроны на ( п 1) 5-орбиталях.

Нормальное и возбужденное состояния атомов. Графическое изображение электронных формул атомов элементов

Квантовое состояние с наименьшей энергией атома называется нормальным, или основным; остальные квантовые состояния с бóльшими уровнями энергии называются возбужденными. Электрон в нормальном состоянии связан с ядром наиболее прочно. В возбужденном состоянии атома связь электрона с ядром ослабевает (вплоть до отрыва электрона от атома).

В нормальном состоянии атом может существовать неограниченное время, в возбужденном же состоянии – ничтожные доли секунды (

Возбуждение атома происходит при нагревании, электроразряде, поглощении света и т.д., и в любом случае атом поглощает лишь определенные порции – кванты энергии.

Возможные энергетические состояния атомов элементов можно наглядно представить с помощью графических формул. Обычно учитывают только валентные электроны, так как именно они обусловливают химические свойства и возможные превращения атомов элементов. Рассмотрим на конкретном примере.

В атоме хлора заполняется электронами третий уровень, в пределах которого энергетически возможен d-подуровень. Энергия его достаточно велика, поэтому заполнение его возможно лишь для элементов 4-го периода (мы это ранее объясняли). Однако, если атому хлора сообщить дополнительную энергию, он может перейти в возбужденное состояние, которое сопровождается постепенным распариванием р- и s-электронов и переходом их на d-подуровень. Для атома хлора возможно несколько возбужденных состояний.

Cl…3s 2 3p 5

Clspd

Clspd

Clspd

Атомы хлора в возбужденном состоянии приобретают положительную степень окисления, равную +3, +5, +7 (высшая степень окисления), соответственно.

Валентность, обусловленная числом неспаренных электронов, также различна у этих элементов. Фтор может быть только одновалентным, в то время как хлор за счет возможного перехода в возбужденное состояние может проявлять еще валентность, равную трем, пяти и семи. Так, исходя из электронного строения атомов, мы можем объяснить различные возможности этих элементов в химических превращениях. Более подробно зависимость химических свойств элементов и их соединений от электронного строения атомов элементов разберем ниже.

Основное состояние — электрон

Основное состояние электрона nl, I ml 0 не вырождено и сферически-симметрично.

Основным состоянием электронов называют состояние с наименьшей энергией; остальные состояния называют возбужденными.

Для основного состояния электрона в атоме водорода атомная напряженность Е, 5 109 В / см. Реализовать в лабораторных условиях столь сильное постоянное поле невозможно по техническим причинам.

Случай основного состояния электрона ( п 0) является в некотором смысле особым. В этом состоянии спин электрона может быть ориентирован только против направления магнитного поля ( D 05 D — 1), и поэтому разделение энергии вакуумного взаимодействия на части указанным выше способом невозможно.

Если уровень основного состояния электрона на доноре расположен очень близко к дну зоны проводимости, то электропроводность, обусловленная донорными электронами, почти не зависит от температуры ( кривая D); в этом случае кривая электропроводности в значительном интервале температуры сходна с соответствующей кривой для металлов.

Если для изображения основного состояния электронов проводимости достаточно знать форму ферми-поверхности, то для нахождения энергии квазичастиц, то есть электронов и дырок, необходимо нанести на поверхность Ферми векторы скорости.

Эта энергия соответствует основному состоянию электрона в атоме водорода. Этот результат, как и ряд других, вытекающих из квантово-механического рассмотрения атома водорода, переносится на любые так называемые водородоподобные частицы, состоящие из положительно заряженного ядра и одного электрона. К такой частице, например, относится ион Не, состоящий из ядра гелия и одного электрона.

Волновая функция, описывающая основное состояние электрона в атоме водорода, имеет вид if ( r) Ае — г / а, где г — расстояние электрона от ядра, а — первый боровский радиус. Определить среднее значение квадрата расстояния ( г2) электрона до ядра в основном состоянии.

Волновая функция, описывающая основное состояние электрона в атоме водорода, имеет вид tj ( r) Ак — г / а, где г — расстояние электрона до ядра; а — первый боровский радиус.

Для определения собственной энергии основного состояния электрона в ловушке значительные возможности предоставляет фотоэффект. В работах был определен порог фотоэффекта для растворов натрия, калия и цезия в аммиаке; он оказался равным 1 5 — 1 6 эв.

Для определения собственной энергии основного состояния электрона в ловушке значительные возможности предоставляет фотоэффект. В работах был определен порог фотоэффекта для растворов натрия, калия и цезия в аммиаке; он оказался равным 1 5 — 1 6 эв.

При Z ZKP уровень основного состояния электрона 1 si / 2 исчезает из дискретного спектра и сливается с нижним континуумом. Если уровень 1 si / 2 не был заполнен электронами, то с точки зрения ди-раковской картины в нижнем континууме появляется вакансия, которая может быть занята двумя электронами из дираковского моря, различающимися знаком проекции спина. При этом в дираков-ском море образуются две дырки ( позитроны), которые, просочившись через кулоновский барьер в эффективном потенциале, уходят на бесконечность как реальные частицы. С точки зрения вторично квантованной теории сверхкритическое кулоновское поле порождает два.

Зонная структура первых четырех элементов таблицы Менделеева. Разрешенные состояния показаны волновой линией, а заполненные — косой штриховкой. У Be вторая и третья зоны перекрываются.

В модели Друде-Лоренца — Зоммерфельда основное состояние электронов проводимости — заполненная ими ферми-сфера.

Спектры ЭПР также показывают, что основное состояние электронов в ванадиевой подрешетке локализовано, а взаимодействие с ближайшими соседями происходит по возбужденному 4 -состоя-нию.

Медь, Cu

Латинское название — Cuprum, символ — Cu. Относительная атомная масса — 63,5. Медь находится в 4 периоде, I B-группе ПСХЭ. Порядковый номер — 29.

Распределение электронов по уровням и подуровням характеризует следующая электронная формула: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 . В возбужденном состоянии на 4s уровень и подуровень «проскакивает» один d-электрон. Атом получает более устойчивую конфигурацию электронных оболочек.

Типичные значения валентностей и степеней окисления в соединениях: I(+), II(+), 0, +1, +2 соответственно. Заряд катиона 2+.

Способ получения меди в лаборатории — восстановление из оксида с помощью водорода при нагревании.

  • Восстановление водородом. Схема процесса: Cu +2 O + H2 → Cu 0 + H2O.
  • Металлотермия. Происходит реакция обмена CuO + H2SO4 → CuSO4 + H2O. далее идет вытеснение меди железом CuSO4 + Fe → FeSO4 + Cu↓.
  • Электролиз водного раствора сульфата меди. На катоде происходит восстановление Cu 2+ + 2ē → Cu 0 ; на аноде — окисление 2H2O – 4ē → 4H + + O2↑.

Описание металла — простого вещества

  • золотисто-красный цвет (рис. 2);
  • металлический блеск;
  • пластичен, легко вытягивается в проволоку и прокатывается в листы;
  • тепло- и электропроводность высокие.

Химические свойства:

  • Медь в ряду активности находится после водорода, это инертный металл.
  • Не взаимодействует с водой.
  • Не реагирует при обычных условиях с водородом, углеродом, кремнием, азотом, с растворами соляной и серной кислот, растворами щелочей.
  • Взаимодействует с концентрированными растворами серной и азотной кислот.

Важнейшие соединения меди

Класс веществ

Название соединения

Характер свойств

Амфотерный (преобладают основные свойства).

Строение атома

Темы кодификатора ЕГЭ: Строение электронных оболочек атомов элементов первых четырех периодов: s-, p- и d-элементы. Электронная конфигурация атомов и ионов. Основное и возбужденное состояние атомов.

Одну из первых моделей строения атома — « пудинговую модель » — разработал Д.Д. Томсон в 1904 году. Томсон открыл существование электронов, за что и получил Нобелевскую премию. Однако наука на тот момент не могла объяснить существование этих самых электронов в пространстве. Томсон предположил, что атом состоит из отрицательных электронов, помещенных в равномерно заряженный положительно «суп», который компенсирует заряд электронов (еще одна аналогия — изюм в пудинге). Модель, конечно, оригинальная, но неверная. Зато модель Томсона стала отличным стартом для дальнейших работ в этой области.

И дальнейшая работа оказалась эффективной. Ученик Томсона, Эрнест Резерфорд, на основании опытов по рассеянию альфа-частиц на золотой фольге предложил новую, планетарную модель строения атома.

Согласно модели Резерфорда, атом состоит из массивного, положительно заряженного ядра и частиц с небольшой массой — электронов, которые, как планеты вокруг Солнца, летают вокруг ядра, и на него не падают.

Модель Резерфорда оказалась следующим шагом в изучении строения атома. Однако современная наука использует более совершенную модель, предложенную Нильсом Бором в 1913 году. На ней мы и остановимся подробнее.

Атом — это мельчайшая, электронейтральная, химически неделимая частица вещества, состоящая из положительно заряженного ядра и отрицательно заряженной электронной оболочки.

При этом электроны двигаются не по определенной орбите, как предполагал Резерфорд, а довольно хаотично. Совокупность электронов, которые двигаются вокруг ядра, называется электронной оболочкой .

А томное ядро, как доказал Резерфорд — массивное и положительно заряженное, расположено в центральной части атома. Структура ядра довольно сложна, и изучается в ядерной физике. Основные частицы, из которых оно состоит — протоны и нейтроны . Они связаны ядерными силами (сильное взаимодействие).

Рассмотрим основные характеристики протонов, нейтронов и электронов:

Протон Нейтрон Электрон
Масса 1,00728 а.е.м. 1,00867 а.е.м. 1/1960 а.е.м.
Заряд + 1 элементарный заряд — 1 элементарный заряд

1 а.е.м. (атомная единица массы) = 1,66054·10 -27 кг

1 элементарный заряд = 1,60219·10 -19 Кл

И — самое главное. Периодическая система химических элементов, структурированная Дмитрием Ивановичем Менделеевым, подчиняется простой и понятной логике: номер атома — это число протонов в ядре этого атома . Причем ни о каких протонах Дмитрий Иванович в XIX веке не слышал. Тем гениальнее его открытие и способности, и научное чутье, которое позволило перешагнуть на полтора столетия вперёд в науке.

Следовательно, заряд ядра Z равен числу протонов, т.е. номеру атома в Периодической системе химических элементов.

Атом — это на заряженная частица, следовательно, число протонов равно числу электронов: Ne = Np = Z.

Масса атома ( массовое число A ) равна суммарной массе крупных частиц, которе входят в состав атома — протонов и нейтронов. Поскольку масса протона и нетрона примерно равна 1 атомной единице массы, можно использовать формулу: M = Np + Nn

Массовое число указано в Периодической системе химических элементов в ячейке каждого элемента.

Обратите внимание! При решении задач ЕГЭ массовое число всех атомов, кроме хлора, округляется до целого по правилам математики. Массовое число атома хлора в ЕГЭ принято считать равным 35,5

Таким образом, рассчитать число нейтронов в атоме можно, вычтя из массового числа номер атома: Nn = M – Z.

В Периодической системе собраны химические элементы — атомы с одинаковым зарядом ядра. Однако, может ли меняться у этих атомов число остальных частиц? Вполне. Например, атомы с разным числом нейтронов называют изотопами данного химического элемента. У одного и того же элемента может быть несколько изотопов.

Попробуйте ответить на вопросы. Ответы на них — в конце статьи:

  1. У изотопов одного элемента массовое число одинаковое или разное?
  2. У изотопов одно элемента число протонов одинаковое или разное?

Химические свойства атомов определяются строением электронной оболочки и зарядом ядра. Таким образом, химические свойства изотопов одного элемента практически не отличаются.

Поскольку атомы одного элемента могут существовать в форме разных изотопов, в названии часто указывается массовое число, например, хлор-35, и принята такая форма записи атомов:

3. Определите количество нейтронов, протонов и электронов в изотопе брома-81.

4. Определите число нейтронов в изотопе хлора-37.

Электронная конфигурация атомов

Записать распределение электронов по энергетическим уровням можно несколькими способами.

Запись по электронным оболочкам (схема электронного строения)

Показывает заряд ядра и количество электронов на каждом энергетическом уровне.

Легче всего начинать с неё, потому что она показывает структуру атома «крупным планом».

Запись с обозначением энергетических уровней и подуровней

Каждая орбиталь обозначается квадратной ячейкой. Электрон обозначается стрелкой. Различное направление стрелок указывает на противоположные спины.Под ячейкой подписывают номер энергетического уровня, буквенное обозначение орбитали и количество электронов на ней.

Буквенно-числовое обозначение такого «адреса» электрона – это электронная формула. Электронная конфигурация – это электронная формула, которая показывает распределение электронов по энергетическим уровням.

Электронная конфигурация атомов 4 периода

Заполнение орбиталей атомов 4 периода имеет свои особенности.

На движение электрона влияют поле ядра и поле других электронов. Поэтому в атомах с большим количеством электронов энергия электрона определяется главным и орбитальным квантовыми числами.

Здесь уже надо смотреть на сумму обоих квантовых чисел (n+l). Если для двух подуровней эта сумма равна: 3d, 4p, 5s (n+l=5), то сначала заполняются уровни с меньшими значениями n. То есть последовательность заполнения будет следующей: 3d – 4p – 5s.

Поэтому в 4 периоде сначала заполняется подуровень 4s, а потом подуровень 3d.

Есть ещё одна особенность, которая появляется в 4 периоде. Хром и медь имеют на 4s-орбитали по одному электрону. Всё дело в заполнении d-оболочек. Полузаполненные или заполненные d-оболочки устойчивее частично заполненных. В атоме хрома на каждой из 5 3d-орбиталей есть по одному электрону. В атоме меди на каждой на каждой 3d-орбитали есть по два электрона.

Алгоритм записи электронной конфигурации атома

  1. По порядковому номеру химического элемента в таблице Менделеева определяем количество электронов в атоме.
  2. Распределяем электроны по энергетическим уровням, то есть составляем схему электронного строения.
  3. Выписываем s-, p-, d-подуровни в каждом энергетическом уровне.
  4. Заполняем подуровни электронами: сначала по одному электрону на орбиталь, потом достраиваем электронные пары.

Строение электронной оболочки

Согласно квантовой модели строение атома Нильса Бора, электроны в атоме могут двигаться только по определенным (стационарным) орбитам, удаленным от ядра на определенное расстояние и характеризующиеся определенной энергией. Другое название стационарны орбит — электронные слои или энергетические уровни.

Электронные уровни можно обозначать цифрами — 1, 2, 3, …, n. Номер слоя увеличивается мере удаления его от ядра. Номер уровня соответствует главному квантовому числу n.

В одном слое электроны могут двигаться по разным траекториям. Траекторию орбиты характеризует электронный подуровень. Тип подуровня характеризует орбитальное квантовое число l = 0,1, 2, 3 …, либо соответствующие буквы — s, p, d, g и др.

В рамках одного подуровня (электронных орбиталей одного типа) возможны варианты расположения орбиталей в пространстве. Чем сложнее геометрия орбиталей данного подуровня, тем больше вариантов их расположения в пространстве. Общее число орбиталей подуровня данного типа l можно определить по формуле: 2l+1. На каждой орбитали может находиться не более двух электронов.

Тип орбитали s p d f g
Значение орбитального квантового числа l 1 2 3 4
Число атомных орбиталей данного типа 2l+1 1 3 5 7 9
Максимальное количество электронов на орбиталях данного типа 2 6 10 14 18

Получаем сводную таблицу:

Номер уровня, n

Подуровень Число

АО

Максимальное количество электронов
1 1s 1   2
2 2s 1     2
2p 3   6

3

3s 1   2
3p 3   6
3d 5  10

4

4s 1    2
4p 3     6
4d 5 10
4f 7

 14

Заполнение электронами энергетических орбиталей происходит согласно некоторым основным правилам. Давайте остановимся на них подробно.

Принцип Паули (запрет Паули): на одной атомной орбитали могут находиться не более двух электронов с противоположными спинами (спин — это квантовомеханическая характеристика движения электрона).

Правило Хунда. На атомных орбиталях с одинаковой энергией электроны располагаются по одному с параллельными спинами. Т.е. орбитали одного подуровня заполняются так: сначала на каждую орбиталь распределяется по одному электрону. Только когда во всех орбиталях данного подуровня распределено по одному электрону, занимаем орбитали вторыми электронами, с противоположными спинами.

Таким образом, сумма спиновых квантовых чисел таких электронов на одном энергетическом подуровне (оболочке) будет максимальной.

Например, заполнение 2р-орбитали тремя электронами будет происходить так: , а не так: 

Принцип минимума энергии. Электроны заполняют сначала орбитали с наименьшей энергией. Энергия атомной орбитали эквивалентна сумме главного и орбитального квантовых чисел: n + l. Если сумма одинаковая, то заполняется первой та орбиталь, у которой меньше главное квантовое число n.

АО 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 5g
n 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5
l 1 1 2 1 2 3 1 2 3 4
n + l 1 2 3 3 4 5 4 5 6 7 5 6 7 8 9

Таким образом, энергетический ряд орбиталей выглядит так:

1s < 2s < 2 p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f~5d < 6p < 7s <5f~6

Электронную структуру атома можно представлять в разных формах — энергетическая диаграмма, электронная формула и др. Разберем основные.

Энергетическая диаграмма атома — это схематическое изображение орбиталей с учетом их энергии. Диаграмма показывает расположение электронов на энергетических уровнях и подуровнях. Заполнение орбиталей происходит согласно квантовым принципам.

Например, энергетическая диаграмма для атома углерода:

Электронная формула — это запись распределения электронов по орбиталям атома или иона. Сначала указывается номер уровня, затем тип орбитали. Верхний индекс справа от буквы показывает число электронов на орбитали. Орбитали указываются в порядке заполнения. Запись 1s2 означает, что на 1 уровне s-подуровне расположено 2 электрона.

Например, электронная формула углерода выглядит так: 1s22s22p2.

Для краткости записи, вместо энергетических орбиталей, полностью заполненных электронами, иногда используют символ ближайшего благородного газа (элемента VIIIА группы), имеющего соответствующую  электронную конфигурацию.

Например, электронную формулу азота можно записать так: 1s22s22p3 или так: 2s22p3.

1s2 =

1s22s22p6 =

1s22s22p63s23p6 = и так далее.