Измерение температуры в градусах цельсия и кельвинах

КАК ПРАВИЛЬНО ИЗМЕРИТЬ ТЕМПЕРАТУРУ?

Как мы уже отметили, значения температуры сильно разнятся в зависимости от места и способа ее измерения, а также от того, соблюдаются ли правила проведения термометрии, и от качества прибора.

Где измерять?

Различные участки кожи имеют неодинаковую температуру. Обычно кожа головы, туловища и верхних конечностей на 5–7 теплее, чем кожа стоп, температура которых колеблется в пределах 24–35 °С (см. рис. 2).

Температура может быть неодинаковой в левой и правой подмышечных впадинах, чаше слева на 0,1–0,3 °С выше. По этой и другим причинам (охлаждающий термометр пот, мешающий передаче тепла воздух при неплотном прилегании или из одежды) такой вид измерений неточен. Кроме того, отметим следующие минусы ртутного термометра:

− он хрупок;

− представляет серьезную опасность (могут образоваться пары ртути, если повредить корпус);

− требует много времени на измерение;

− нужно дезинфицировать после каждого использования.

Поэтому в нынешних реалиях самый безопасный метод измерить температуру — бесконтактный. Как правило, для этого используются инфракрасные цифровые термометры.

https://clck.ru/Rdsyh.

Средние значения и амплитуда температур

Одна из характеристик климата географической точки — среднесуточная температура. Ее можно определить как среднее арифметическое от замеров, сделанных 4 раза за сутки:

  • в час ночи;
  • в семь часов утра;
  • в 13 часов;
  • в 19 часов.

Среднегодовая температура является средним арифметическим от суммы температур всех месяцев года. Соответственно, среднемесячная определяется по сумме ежедневных данных за месяц, разделенной на число дней в месяце.

Температурные колебания в каком-либо регионе характеризуются амплитудой температуры, т. е. разницей между самым высоким и самым низким значением, зафиксированным за определенный промежуток времени. Обычно говорят о суточной, месячной или годичной амплитуде.

Амплитуда колебаний зависит от многих факторов. Прежде всего — это температурные изменения на подстилающей поверхности, чем шире их диапазон, тем больше амплитуда температуры воздуха. Она зависит и от облачности: в ясную погоду колебания сильнее, чем в пасмурную. Сезонные показатели длительного воздействия также отличаются — зимой они меньше, чем летом. С увеличением широты амплитуда температуры воздушных масс идет на убыль, поскольку убывает высота, на которую поднимается солнце к полудню.

Суточная амплитуда неодинакова на разных формах рельефа земной поверхности. На склонах и вершинах холмов и гор она меньше, чем на равнинных территориях. Это объясняется тем, что у выпуклых рельефных форм площадь соприкосновения воздуха и подстилающей поверхности меньше, чем у плоских. Кроме того, на них воздушные массы быстро сменяются на новые.

В оврагах и лощинах форма рельефа вогнутая. Здесь происходит более сильный нагрев воздуха от поверхности и застаивание его в дневные часы. Ночью большие массы холодного воздуха стекают по стенкам вниз. Поэтому в таких местах наблюдается повышенная амплитуда температуры. Но в очень узких ущельях, где приток солнечной радиации небольшой, этот показатель даже меньше, чем в широких долинах.

На материковой широте 20—30° суточная амплитуда, взятая в среднем за год, составляет около двенадцати градусов Цельсия. На широте 60° — примерно 6 °C, а на широте 70° — всего 3 °C.

Суточный ход на суше

Изменения температуры воздуха происходят вместе с изменением температуры подстилающей поверхности с задержкой примерно 15 минут. В течение суток самые низкие показания у термометра наблюдаются в 4−6 часов утра. Так происходит потому, что воздушные массы, нагретые за дневные часы, в ночные постепенно остывают.

Пик процесса понижения приходится как раз на время перед восходом Солнца. С раннего утра солнечные лучи начинают постепенно нагревать воздух, успевший остыть за ночь. Днем солнце достигает зенита, согревая не только воздушные массы, но и поверхность земли. Самое большое значение термометр показывает в 14−16 часов.

К этому времени атмосфера начинает получать тепло и от солнечной энергии, и от нагретой подстилающей поверхности, а температурный показатель достигает своего максимального значения. Потом начинается постепенное остывание и земли, и воздуха. Правильные наблюдения за суточным ходом температуры желательно проводить при ясной погоде.

Особенности теплообмена над водными поверхностями

Суточные амплитуды над поверхностью морей и океанов больше значений на самой поверхности. Их диапазон колебаний небольшой — в пределах десятых долей градуса. В нижних слоях атмосферы над океанами колебания достигают 1−1,5 °C, над внутренними морями — до 5 °C. Это происходит потому, что днем солнечная радиация поглощается водяным паром в самых нижних слоях воздуха, а ночью от них исходит длинноволновое тепловое излучение.

Отличия условий прогревания воды и суши обусловлены тем, что теплоемкость твердой поверхности в два раза меньше, чем у водной. Одинаковое количество тепла нагревает сушу в два раза быстрее воды. При охлаждении наблюдается обратный процесс. Кроме того, тепло над водными поверхностями расходуется на испарение воды и на прогревание водных масс на значительную глубину. При этом происходит перемешивание воды в вертикальном направлении.

Все это причины того, что в океанах накапливается намного больше тепла, чем на материках. Вода удерживает его долгое время и расходует равномерней суши. Можно утверждать, что температура воздуха над океанами повышается и понижается значительно медленней, чем на суше.

Макроскопические и микроскопические тела.

Мы живем в макромире, и все предметы, которые нас окружают принято называть макроскопическими телами.

Да может быть ваша любимая кружка в масштабах вселенной кажется не такой уж и большой, чтоб носить приставку макро. Но относительно огромного числа атомов и молекул, из которых она состоит, это название вполне заслуженно.

Сами же атомы и молекулы, а также электроны, протоны, нейтроны принято называть микроскопическими телами или микроскопическими частицами.

Совокупности макроскопических тел или иногда отдельные макроскопические тела называют термодинамическими системами.

Так как эти системы состоят из огромного числа подвижных микроскопических частиц, они способны обмениваться веществом и энергией, как внутри самой системы, так и с окружающей средой.

Только представьте какие процессы происходят в Вашей кружке пока она остывает, дожидаясь Вас на кухне.

И здесь интересный момент. Для описания термодинамической системы не обязательно рассматривать поведение каждой отдельной ее молекулы. Это в принципе невозможно.

Состояние термодинамической системы прекрасно характеризуется набором макроскопических параметров, которые описывают систему в целом. Одним из таких параметров и является температура.

Какой термометр выбрать для измерения температуры тела?

Ртутный градусник – самый простой, доступный и самый точный из всех видов медицинских термометров. Стеклянная трубка с капилляром и два грамма ртути – вот и все премудрости. С помощью ртутного термометра можно измерять температуру и в подмышечной впадине, и во рту, и ректально, и вагинально. Длительность измерения – 5-10 минут, погрешность – не более 0,1°C. После каждого использования стеклянный градусник необходимо обрабатывать спиртовым раствором.
К недостаткам ртутного термометра можно отнести его хрупкость, ведь стекло легко бьется, а осколки могут повредить кожу и слизистые, не говоря уже о ртути, которая обладает токсическим действием на организм человека.

Использование электронного термометра – наиболее распространенный в наши дни способ измерения температуры тела. Состоит такой прибор из встроенного наконечника с металлическим датчиком, электронного дисплея и корпуса из пластика или резины. В зависимости от вида цифрового термометра и его цены различается и функциональность прибора. Это и звуковой сигнал, извещающий об окончании замера температуры, и возможность запоминания предыдущих показателей, и подсветка дисплея, и некоторые другие возможности. Время замера температуры электронным термометром сокращается до 0,5-2 минут, погрешность – 0,1-03°C

Правда, есть у этого прибора и свои недостатки – необходимость периодической смены батареек, невозможность полноценно дезинфицировать цифровой термометр, важно точно выполнять и все рекомендации по эксплуатации аппарата.

Инфракрасный термометр снимает показатели температуры тела путем анализа инфракрасного излучения человека. Существует несколько разновидностей таких термометров, позволяющих измерить температуру тела за 10-30 секунд, поднося датчик к вискам, лбу или к слуховому проходу человека

Инфракрасный термометр поможет быстро определить температуру тела у капризничающего ребенка и у спящего человека. Такой прибор – наиболее дорогой из всех представленных, а погрешность измерения может составлять 0,3-05°C.
Есть в продаже и так называемые термополоски (состоящие из термочувствительной пленки), которые прикладываются к коже лба на несколько секунд и при нагревании меняют свой цвет. Точность измерения температуры тела такими датчиками весьма невысокая: все, на что способна термополоска – сообщить нам, что температура нормальная или повышенная. Однако и такой метод может пригодиться в определенных ситуациях – например, в путешествиях.

Примеры задач с решением

Пример 1

Задание. Чему станет равна постоянная Больцмана, если за единицу температуры по шкале Кельвина принимать не 1К, а 5 К?

Решение. По условию задачи единица температуры в системе СИ стала больше в пять раз, это означает, что если обозначить температуру по общепринятой шкале как $T$, но по нашей новой шкале ($T_N$) она станет равна:

По закону о равномерном распределении энергии по степеням свободы ($i$ – число степеней свободы молекулы) мы имеем:

$k=1,38•{10}^{-23}frac{Дж}{К}$- постоянная Больцмана.

Средняя кинетическая энергия молекул измеряется в Дж и не зависит от масштаба единиц температуры, это означает, что:

Вычислим нашу новую «постоянную Больцмана»:

Ответ. $k_N=6,9cdot {10}^{-23}frac{Дж}{К}$

Пример 2

Задание. Идеальный газ, показателем адиабаты $gamma =1,4$ сжали, как показано на рис.1. Первоначальная температура газа составляла $T_1=290 K$. Какой стала температура газа после сжатия? Выразите температуру газа в градусах Цельсия.

Решение. На рис.1 изображен адиабатный процесс, так как указано, что он происходит без теплообмена ($delta Q=0$). Для решения нашей задачи удобнее использовать уравнение адиабатного процесса в параметрах $p,T$:

Из уравнения (2.1) выразим конечную температуру:

Вычислим температуру:

Выразим температуру в градусах Цельсия:

Ответ. $t=287{rm{}^circ!C}$

Читать дальше: единицы измерения.

Кельвин, градус Цельсия — единицы измерения температуры в системе СИ

В Международной системе единиц (СИ), единицей термодинамической температуры ($T$) является кельвин (К). Это основная единица данной системы единиц. Один кельвин — это термодинамическая температура равная $\frac{1}{273,16}$ части от температуры тройной точки воды. К недостатками такого определения относят то, что попытки получить температуру в один кельвин связаны с зависимостью от чистоты и изотопного состава воды. Существуют попытки дать определение одного кельвина через величину постоянной Больцмана ($k=1,38\cdot {10}^{-23}\frac{Дж}{К}$). Вероятно в таком случае один кельвин — это будет такое изменение температуры, которое ведет к изменению энергии (на одну степень свободы) равному $kT$=$1,38\cdot {10}^{-23}Дж$.

Единица термодинамической температуры именована в честь английского ученого У. Томсона (лорда Кельвина). Вплоть до 1968 г. единицу термодинамической температуры называли градусом Кельвина. Начало шкалы термодинамической температуры совпадает с абсолютным нулем ($T=0К$).

Кратные и дольные единицы кельвина получают используя стандартные приставки системы СИ, например, кК — килокельвин ($1кК={10}^3К$); пК -пикокельвин ($1пК={10}^{-12}К$) и т.д.

Градус Цельсия (${\rm{}^\circ\!C}$) — это еще одна единица измерения температуры ($t$), которую используют в системе СИ совместно с кельвином. Свое название ${\rm{}^\circ\!C}$ получил в честь шведского ученого А. Цельсия, который создал свою шкалу измерения температуры. На сегодняшний момент градус Цельсия равен кельвину, однако ноль шкалы температур по Цельсию сдвинут относительно шкалы Кельвина:

Соответствие физической величины в системе СИ

Основные величины

Величина Символ Единица СИ Описание
Длина l метр (м) Протяжённость объекта в одном измерении.
Вес m килограмм (кг) Величина, определяющая инерционные и гравитационные свойства тел.
Время t секунда (с) Продолжительность события.
Сила электрического тока I ампер (А) Протекающий в единицу времени заряд.

Термодинамическая

температура

T кельвин (К) Средняя кинетическая энергия частиц объекта.
Сила света

Iv

кандела (кд) Количество световой энергии, излучаемой в заданном направлении в единицу времени.
Количество вещества ν моль (моль) Количество частиц, отнесенное к количеству атомов в 0,012 кг12C

Производные величины

Величина Символ Единица СИ Описание
Площадь S м2 Протяженность объекта в двух измерениях.
Объём V м3 Протяжённость объекта в трёх измерениях.
Скорость v м/с Быстрота изменения координат тела.
Ускорение a м/с² Быстрота изменения скорости объекта.
Импульс p кг·м/с Произведение массы и скорости тела.
Сила

F

кг·м/с2 (ньютон, Н) Действующая на объект внешняя причина ускорения.
Механическая работа A кг·м2/с2 (джоуль, Дж) Скалярное произведение силы и перемещения.
Энергия E кг·м2/с2 (джоуль, Дж) Способность тела или системы совершать работу.
Мощность P кг·м2/с3 (ватт, Вт) Скорость изменения энергии.
Давление p кг/(м·с2) (паскаль, Па) Сила, приходящаяся на единицу площади.
Плотность ρ кг/м3 Масса на единицу объёма.
Поверхностная плотность ρA кг/м2 Масса на единицу площади.
Линейная плотность ρl кг/м Масса на единицу длины.
Количество теплоты Q кг·м2/с2 (джоуль, Дж) Энергия, передаваемая от одного тела к другому немеханическим путём
Электрический заряд q А·с (кулон, Кл)  
Напряжение U м2·кг/(с3·А) (вольт, В) Изменение потенциальной энергии, приходящееся на единицу заряда.
Электрическое сопротивление R м2·кг/(с3·А2) (ом, Ом) сопротивление объекта прохождению электрического тока
Магнитный поток Φ кг/(с2·А) (вебер, Вб) Величина, учитывающая интенсивность магнитного поля и занимаемую им область.
Частота ν с−1 (герц, Гц) Число повторений события за единицу времени.
Угол α радиан (рад) Величина изменения направления.
Угловая скорость ω с−1 (радиан в секунду) Скорость изменения угла.
Угловое ускорение ε с−2 (радиан на секунду в квадрате) Быстрота изменения угловой скорости
Момент инерции I кг·м2 Мера инертности объекта при вращении.
Момент импульса L кг·м2/c Мера вращения объекта.
Момент силы M кг·м2/с2 Произведение силы на длину перпендикуляра, опущенного из точки на линию действия силы.
Телесный угол Ω стерадиан (ср)  

Смотри также:

  • Справочные материалы по физике
  • Закон Ома
  • Первый закон Ньютона
  • Второй закон Ньютона
  • Третий закон Ньютона
  • Формулы кинематики
  • Формулы МКТ

Требования к документу

У комиссии должен быть бланк акта. Если он составляется без него, обязательно выдерживаются следующие пункты:

  1. В документе указывается полный и точный адрес квартиры. Необходимо записать и сведения о владельце.
  2. Потом идет перечисление характеристик жилья. Указывается количество комнат, этаж помещения, насколько жилье утеплено.
  3. Даются и технические характеристики отопительной системы. Что должно быть в них? Схема разводки, температура наружная теплообменников, фактическая температура теплоносителей (и на подаче, и на обратке).
  4. Указывается температура и влажность воздуха, температура внутренне поверхности стены.
  5. В итоге акта должна быть указана (или указаны) причины того, что температура в квартире понижена или повышена.

Составленный и подписанный акт передается в Управляющую Компанию или в теплоснабжающую организацию, они должны предпринять меры к исправлению ситуации.

При отсутствии реакции потребитель вправе обратиться в прокуратуру, в Роспотребнадзор. При крайних обстоятельствах – в суд

Но важно, чтобы иск в суд был составлен после того, как не дали результата обращения в другие организации. Важно иметь на руках доказательства попыток досудебного урегулирования проблемы

Годовые и ежемесячные изменения

Изменение температурных показателей по месяцам называют годовым ходом температуры и характеризуют годовой амплитудой, т. е. разностью между средней температурой самого теплого месяца и самого холодного.

Климат называется морским, если для него характерны небольшие годовые колебания температуры. Большая амплитуда определяет континентальный климат. Таким образом, климатические изменения происходят не только от экватора к полюсам, но и вдоль широт при удалении от берегов океанов вглубь материков.

На годовой ход оказывают влияние широта и континентальное месторасположение географических зон. Увеличение высоты над уровнем моря приводит к уменьшению температурных колебаний за год. Определение средней многолетней амплитуды и времени наступления минимальной и максимальной температуры позволяет выделить четыре типа годового хода:

  • Экваториальный тип. Он характеризуется двумя слабовыраженными максимумами температурных значений — после весеннего и осеннего равноденствия, и двумя минимумами — после зимнего и летнего солнцестояния. Годовая амплитуда небольшая. Над океанами около градуса, над материками — до 10 °C.
  • Тропический тип. На широтах, относящихся к нему, преобладает простой годовой ход. Крайние значения приходятся на время летнего и зимнего солнцестояний. Амплитуда над побережьями порядка 5°, а внутри материков достигает 1—20 °C. Для муссонных областей характерен максимум перед летними муссонами, с приходом которых температура снижается.
  • Тип умеренного пояса. Максимально и минимально прогревается воздух в этих широтах примерно через месяц после солнцестояний. Для континентального климата характерны большие колебания в 25—40 °C, в Азии они могут доходить до 60 °C. Для морского составляют 10—15 °C. Включает в себя несколько подтипов — собственно умеренный, субтропический и субполярный.
  • Полярный тип. В Северном полушарии максимум температуры приходится на июль, в Южном — на январь. Минимум наступает перед появлением Солнца после полярной ночи. Имеет большой диапазон амплитуды даже над океанической поверхностью.

Тема изменения температуры очень важна для определения метеорологических условий в каждой из географических зон земной поверхности. Температурная климатическая норма — это среднее значение, вычисленное за тридцатилетний период. При отслеживании погоды для наглядности применяются такие статистические величины, как отклонения от нормы или аномалии за сутки, месяц, сезон или год.

Изменение температуры

Явление термодинамического равновесия тел, составляющих систему, говорит о наличии одинаковой температуры этих тел. Произвести замер температуры можно лишь косвенно, взяв за основу зависимость от температуры таких физических свойств тел, которые можно измерить непосредственно.

Определение 2

Вещества или тела, применяемые для получения значения температуры, называют термометрическими.

Допустим, два теплоизолированных тела приведены в тепловой контакт. Одно тело передаст другому поток энергии: запустится процесс теплопередачи. При этом тело, отдающее тепло, обладает соответственно большей температурой, чем тело, «принимающее» поток тепла. Очевидно, что через некоторое время процесс теплопередачи остановится и наступит тепловое равновесие: предполагается, что температуры тел выравниваются относительно друга, их значения будут находиться где-то в интервале между исходными значениями температур. Таким образом, температура служит некоторой меткой теплового равновесия. Получается, что любая величина t, удовлетворяющая требованиям:

  1. t1>t2, когда происходит теплопередача от первого тела ко второму;
  2. t1’=t2’=t, t1>t>t2, при установлении теплового равновесия может приниматься за температуру.

Также отметим, что тепловое равновесие тел подчинено закону транзитивности.

Определение 3

Закон транзитивности: когда два тела находятся в равновесии с третьим, то и между собой они пребывают в тепловом равновесии.

Важной чертой указанного определения температуры является его неоднозначность. Выбрав по-разному величины, отвечающие установленным требованиям (что отразится на способах измерения температуры), возможно получить несовпадающие шкалы температур

Определение 4

Температурная шкала – это способ деления на части интервала температуры.

Разберем пример.

Пример 1

Общеизвестным устройством для измерения температуры является термометр. Для рассмотрения возьмем термометры различного устройства. Первый представлен ртутным столбиком в капилляре термометра, и значение температуры здесь определяется длиной этого столбика, отвечающей условиям 1 и 2, указанным выше.

И еще один способ измерить температуру: используя термопару – электрическую цепь с гальванометром и двумя спаями разнородных металлов (рисунок 1).

Рисунок 1

Один спай находится в среде с фиксированной температурой (в нашем примере это тающий лед), другой – в среде, температуру которой необходимо определить. Здесь признаком температуры является ЭДС термопары.

Указанные способы измерения температуры не дадут одинаковых результатов. И для перехода одной температуры к другой следует построить градуировочную кривую, которая установит зависимость ЭДС термопары от длины ртутного столбика. В этом случае равномерная шкала ртутного термометра преобразуется в неравномерную шкалу термопары (или наоборот). Равномерные шкалы измерения температур ртутного термометра и термопары создают две абсолютно различные температурные шкалы, на которых тело в одном и том же состоянии будет иметь различные температуры. Также возможно рассмотреть одинаковые по устройству термометры, но имеющие разные «термические тела» (к примеру, ртуть и спирт): мы не будем наблюдать совпадения температурных шкал и в этом случае. График зависимости длины ртутного столбика от длины спиртового столбика не будет линейным.

Из вышесказанного можно сделать вывод, что понятие температуры, базирующееся на законах теплового равновесия, неоднозначно. Подобная температура является эмпирической, зависит от способа измерения. За «нуль» шкалы эмпирической температуры принимается произвольная точка. Согласно определению эмпирической температуры, физический смысл несет лишь разность температур или ее изменение. Любая эмпирическая температурная шкала приводится в вид термодинамической температурной шкалы при использовании поправок, которые учтут характер связи термометрического свойства с термодинамической температурой.

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!

Описать задание

Нормальная температура тела человека

Нормальная температура тела взрослого человека — 36,6 °С. Но это лишь усредненный показатель. На самом деле физиологические колебания температуры тела здорового человека находятся в пределах от 35,5 до 37,4 °C. Это закономерно: во время сна обменные процессы замедляются и температура тела снижается, а в бодрствующем состоянии, особенно при физических и эмоциональных нагрузках, температура тела растет. Поэтому утренняя температура обычно меньше, чем дневная или вечерняя. Также температура тела зависит от способа и места ее измерения, пола, возраста и состояния обследуемого. А у женщин от фазы цикла или беременности. Температура тела у ребенка лабильнее и в большей степени зависит от температуры окружающей среды и от состояния организма.

Кельвин

Лорд Уильям Кельвин (1824–1907) был шотландским физиком, который изобрел шкалу Кельвина (K) в 1854 году. Она основана на идее абсолютного нуля, теоретической температуры, при которой все молекулярное движение прекращается и никакая различимая энергия не может быть измерена. В теории, нулевая точка на шкале Кельвина является минимально возможной температурой, которая существует во вселенной: -273.15ºC.

Шкала Кельвина использует ту же единицу деления по шкале Цельсия. Однако он сбрасывает нулевую точку на абсолютный ноль: -273,15 ° C. Таким образом, температура замерзания воды составляет 273,15 К (градуировки на шкале называются Кельвинами, и ни термин «градус», ни символ º не используются), а 373,15 К — точка кипения воды.

Шкала Кельвина, как и шкала Цельсия, является стандартной единицей измерения СИ. Обычно используется в научных измерениях. Поскольку на  Кельвина нет отрицательных чисел (так как теоретически ничто не может быть холоднее абсолютного нуля), очень удобно использовать значения Кельвина при измерении экстремально низких температур в научных исследованиях . (Три шкалы сравниваются на рисунке 1.)

Рисунок 1: Сравнение трех различных температурных шкал.

Хотя это может показаться запутанным, каждая из трех обсуждаемых температурных шкал позволяет нам измерять тепловую энергию немного по-разному. Измерение температуры в любой из трех шкал можно легко преобразовать в другую шкалу, используя приведенные ниже простые формулы.

Из по Фаренгейту по Цельсию Кельвину
ºF F (ºF — 32) /1,8 (ºF-32) * 5/9 + 273,15
ºC (ºC * 1,8) + 32 C ºC + 273,15
K (К-273.15) * 9/5 + 32 К — 273,15 K

Таблица 1: Преобразование температуры

температура это:

ТЕМПЕРАТУ́РАж.1.Умеренная, средняя т.Постоянная, комнатная т.Июльская, летняя т.Ночная, дневная т.Т. воды, воздуха.Т. плавления, кипения, замерзания какого-л. тела.Т. в комнате.Т. по Цельсию, по Фаренгейту.Т. ниже нуля.Колебания, изменения температуры.Повысить, понизить температуру.Нагреть, довести что-л. до какой-л. температуры.Следить за температурой.2.Повышенная, нормальная, пониженная т.Т. раненого.Сбить кому-л. температуру.Т. повышается.Т. скачет(разг.).У больного т. сорок градусов.Измерить температуру градусником, рукой, губами.3.Разг.У ребёнка т.У него нет температуры.Ходить с температурой на работу, работать с температурой.◁ж.Смягчит.Как ваша т.?Т-ые изменения.Т. режим электропечи.Т-ая криваяТ. шов(техн.;Т. листТttТ- см.см.см.см.ttT

Энциклопедический словарь. 2009.

dic.academic.ru