Телескоп джеймс уэбб

Что увидит JWST?

Ранняя Вселенная

JWST сможет заглянуть в глубокое прошлое нашей Вселенной. В те времена, когда с момента Большого взрыва прошло всего лишь примерно 200 миллионов лет. Это очень интересный период эволюции Вселенной. Ведь именно тогда начали формироваться самые первые звезды.

Считается, что это были массивные гиганты, почти полностью состоящие из водорода и гелия. Их короткая жизнь заканчивалась взрывами сверхновых. Именно в результате этих взрывов в космосе появились более тяжелые, чем гелий, элементы. Чтобы увидеть этот период космической истории, нужны очень чувствительные инфракрасные инструменты. Только с их помощью можно обнаруживать очень слабые источники света, которые преодолели чудовищные расстояния за невообразимое количество времени, чтобы достичь нас.

Древние галактики

JWST также обратит свой взор на самые первые галактики во Вселенной. Это позволит ученым больше узнать об их эволюции. А еще — почему у ранних галактик не было большого структурного разнообразия? Почему в молодой Вселенной почти все галактики имели спиральную или эллиптическую форму?

Изучение галактик также может дать нам информацию о макроструктуре Вселенной. То есть о том, как она организована в глобальных масштабах.

Темная материя

Считается, что темная материя играет важную роль в структуре Вселенной. Поскольку ее масса в пять раз превышает массу нормальной барионной материи. Мы можем наблюдать темную материю лишь косвенно, измеряя, как ее гравитация влияет на звезды и галактики.

JWST, к сожалению, не сможет увидеть темную материю. Но он будет использовать методы гравитационного линзирования, чтобы изучать самые далекие галактики и анализировать на их вращение в поисках признаков того, что именно темная материя несет за это ответственность.

Атмосфера экзопланеты

JWST может помочь ученым ответить на самый большой вопрос современности — существует ли жизнь за пределами Земли? Для этого он будет изучать множество экзопланет.

Особый интерес среди них представляет для науки система TRAPPIST-1. В этой звездной семье три из семи ее планет находятся в обитаемой зоне. А у одной даже может быть на поверхности жидкая вода. JWST будет с интересом наблюдать за этой планетой, когда свет от ее родительской звезды будет проходить через ее через атмосферу. Так можно будет узнать ее химический состав, и получить информацию о присутствующих в ней газах.

Газовые гиганты Солнечной системы

Хотя основные научные цели JWST лежат в основном в области космологии и изучения механизмов звездообразовании, он также сможет поподробнее рассмотреть пару знакомых нам объектов — Нептун и Уран.

JWST нанесет на карту их атмосферные температуры и химический состав. Это позволит ученым понять, насколько они отличаются. И не только друг от друга, но и от своих собратьев — газовых гигантов Юпитер и Сатурн.

Плутон и объекты пояса Койпера

Карликовая планета Плутон и другие объекты пояса Койпера также получат свою долю внимания.

JWST достаточно мощен, чтобы непосредственно изучать ледяные тела пояса Койпера. В том числе кометы, которые часто являются нетронутыми остатками исходного материала, оставшегося после формирования планет Солнечной системы. И эти тела вполне могут содержать ключи к разгадке происхождения нашей Земли.

HabEx

Первым телескопом, на который стоит обратить свое внимание, является HabEx (Habitable Exoplanet Imaging Mission, «Миссия по поиску обитаемых экзопланет»). Эта космическая обсерватория в теории сможет вести прямую съемку экзопланет, обращающихся вокруг других звезд

Его целями должны стать самые разнообразные планеты, начиняя от горячих юпитеров и заканчивая «суперземелями». Основной же его задачей будет поиск землеподобных планет и исследование их атмосфер.

Исследования миров будут проводиться через анализ световых волн, особенность изменения которых будет говорить о наличии у планеты той или иной биосферы

Для возможности наблюдения за планетами HabEx потребуется каким-то образом блокировать свет звезд, чтобы можно было увидеть менее яркие планеты, расположенные вокруг них. Сделать это можно двумя способами.

Для первого понадобится коронограф, представляющий собой по большому счету искусственный блокирующий экран, установленный внутри телескопа и закрывающий от него лучи света звезды. В таком случае оставшийся свет может отражаться от других объектов, расположенных возле звезды и может быть пойман специальным детектором. Наличие в телескопе зеркала с изменяемой поверхностью отражения и последующая тонкая настройка позволят разглядеть находящиеся у звезды планеты.

Пример использования коронографа, установленного на телескопе VLT Европейской южной обсерватории можно посмотреть ниже. Центральная звезда двойной звездной системы HR 4796A в созвездии Центавра скрыта, что позволяет разглядеть вокруг нее протопланетный диск.

А это, пожалуй, одно из самых крутых изображений за всю историю астрономии. С помощью одного из телескопов обсерватории Кека (Гавайи) удалось заснять четыре планеты размером с Юпитер, вращающиеся вокруг молодой звезды HR 8799 в созвездии Пегаса. Изображение создано на базе снимков, полученных в разное время наблюдений. Но выглядит от этого не менее впечатляюще.

Второй метод будет заключаться в использовании отдельного космического аппарата Starshade в форме подсолнечника, который будет отлетать на десятки тысяч километров от телескопа, а затем раскрываться и блокировать свет интересующей звезды, позволяя вести наблюдение за имеющимися вокруг нее планетами. Особенность конструкции Starshade позволяет создавать очень темную тень, обеспечивая наиболее лучший обзор на интересующий объект.

Художественное представление прототипа Starshade – гигантской структуры, разработанной для блокирования яркого света звезд и последующего наблюдения с помощью телескопов за находящимися возле них планетами

Еще одна прелесть Starshade заключается в том, что аппарат в теории можно будет использовать практически с любой космической обсерваторией.

В настоящий момент самым эффективным и доступным методом обнаружения новых экзопаленет является транзитный метод поиска или метод расчета лучевых скоростей. Однако благодаря таким телескопам, как HabEx за планетами станет возможно вести наблюдение напрямую.

В дополнении к своей основной задаче по поиску и изучению экзопланет HabEx будет заниматься и вопросами астрофизики, например, наблюдая за светом ранней Вселенной, или изучая химический состав больших звезд до и после их коллапса в сверхновые.

Как устроен «Джеймс Уэбб»?

«Уэбб» выглядит как ромбовидный плот, оснащенный толстой изогнутой мачтой и парусом — если бы его строили гигантские пчелы, питающиеся бериллием.

Направленный нижней частью к Солнцу, снизу «плот» состоит из щита — слоев каптона, разделенных щелями. Каждый слой разделен вакуумной щелью для эффективного охлаждения, а вместе они защищают основной отражатель и инструменты.

Если вы захотите, вы сможете вскипятить воду на одной стороне щита и сохранить азот в жидком состоянии на другой

Складывается он тоже довольно хорошо, что важно для запуска

Судовой «киль» состоит из структуры, которая хранит солнечный щит во время запуска и солнечные батареи для обеспечения питания аппарата. В центре находится короб, который содержит все важные функции поддержки, за счет которых работает «Уэбб», включая электроэнергию, управление ориентацией, связь, командование, обработку данных и тепловой контроль. Антенна украшает внешний вид короба и помогает убедиться, что все ориентировано в нужном направлении. На одном из концов теплового щита, перпендикулярно к нему, находится триммер момента, который компенсирует давление, оказываемое фотонами на аппарат.

На космической стороне щита находится «парус», гигантское зеркало Уэбба, часть оптического оснащения и короб с оборудованием. 18 шестиугольных бериллиевых секций развернутся после запуска, чтобы стать одним большим главным зеркалом на 6,5 метра в поперечнике.

Напротив этого зеркала, удерживаемого на месте тремя опорами, находится вторичное зеркало, которое фокусирует свет от главного зеркала в кормовой оптической подсистеме, клиновидной коробке, выступающей из центра основного зеркала. Эта структура отклоняет рассеянный свет и направляет свет от вторичного зеркала к инструментам, размещенным в задней части «мачты», которая также поддерживает сегментированную структуру основного зеркала.

После того как аппарат завершит свой шестимесячный период ввода в эксплуатацию, он проработает 5-10 лет, а может, и больше, в зависимости от расхода топлива, однако его местоположение будет слишком далеко, чтобы его можно было починить. На самом деле, «Хаббл» и Международная космическая станция являются своего рода исключениями в этом плане. Но, как у «Хаббла» и других общих обсерваторий, миссией «Уэбба» будет работа с проектами ученых всего мира, отбираемых на конкурсной основе. Затем результаты будут находить свой путь в исследованиях и данных, доступных в Интернете.

Lynx

Следующим телескопом идет Lynx – рентгеновский телескоп NASA нового поколения. На удивление название аппарата не является акронимом. Он назван в честь представителя семейства кошачьих – рыси (с английского «lynx»). В многочисленных культурах рыси считаются животными, обладающими сверхъестественной способностью видеть истинную природу вещей.

Рентгеновские лучи находятся на дальнем конце электромагнитного спектра (расположены между ультрафиолетовым излучением и гамма-излучением) и блокируются земной атмосферой. Поэтому для того чтобы их увидеть, необходим телескоп, находящийся в космосе. На данный момент флагманским рентгеновским телескопом является Космическая рентгеновская обсерватория «Чандра» NASA. Европейской космическое агентство собирается запустить в 2028 году свой рентгеновский телескоп ATHENA.

Концепт рентгеновского телескопа Lynx

Планируется, что Lynx будет работать в качестве партнера телескопу «Джеймс Уэбб», всматриваясь в края наблюдаемой Вселенной, раскрывая тайны появления первых сверхмассивных черных дыр и помогая составлять картину природы их формирования и слияния с течением времени. Он также сможет наблюдать за излучением, идущим от горячего газа ранней космической паутины, собирая данные о том, как формировались самые первые звезды и галактики.

После этого Lynx планируется использовать для исследования объектов, которыми до него занимались «Чандра», XMM Newton и другие рентгеновские телескопы: пульсаров, коллапсаров, сверхновых, черных дыр и многого другого. Даже обычные звезды могут создавать вспышки рентгеновского излучения, а значит и они станут объектами исследования.

Основная часть материи Вселенной сосредоточена в облаках газа, разогретого до миллиона градусов Кельвина. И если мы хотим увидеть Вселенную такую, какая она есть на самом деле, нам необходимо вести наблюдение в рентгеновском диапазоне волн.

Рентгеновские телескопы отличаются от космических обсерваторий, таких как «Хаббл», работающих в видимом диапазоне волн. Здесь не получится использовать обычное зеркало, в которое будут ударяться рентгеновские лучи. Вместо этого для фокусировки лучей необходимо использовать зеркала скользящего падения, позволяющие перенаправлять попадающие в них фотоны в детектор.

Художественное представление Космической рентгеновской обсерватории «Чандра». На данный момент это самый чувствительный рентгеновский телескоп

Благодаря использованию трехметровому наружному зеркалу Lynx будет в 50-100 раз чувствительнее, получит в 16 раз больший угол обзора и сможет улавливать фотоны в 800 раз быстрее «Чандры».

Зачем нужны космические телескопы

Прежде чем приступать к рассмотрению технических особенностей, давайте разберемся, зачем вообще нужны космические телескопы и какие преимущества они имеют перед комплексами, расположенными на Земле. Дело в том, что земная атмосфера, а особенно содержащийся в ней водяной пар, поглощает львиную долю излучения, идущего из космоса. Это, конечно, очень сильно затрудняет изучение далеких миров.

Но, атмосфера нашей планеты с ее искажениями и облачностью, а также шумы и вибрации на поверхности Земли не помеха для космического телескопа. В случае с автоматической обсерваторией «Хаббл» из-за отсутствия влияния атмосферы ее разрешающая способность примерно в 7–10 раз превосходит показатели телескопов, расположенных на Земле. Многие фото далеких туманностей и галактик, которые нельзя различить на ночном небе невооруженным глазом, были получены именно благодаря «Хабблу». За 15 лет работы на орбите телескоп получил более одного млн изображений 22 тыс. небесных объектов, среди которых многочисленные звезды, туманности, галактики и планеты. При помощи «Хаббла» ученые, в частности, доказали, что близ большинства светил нашей Галактики происходит процесс формирования планет.

Но запущенный в 1990 году «Хаббл» не вечен, а его технические возможности ограничены. Действительно, за последние десятилетия наука шагнула далеко вперед, и теперь можно создать гораздо более совершенные устройства, которые способны приоткрыть многие тайны Вселенной. Именно таким аппаратом станет «Джеймс Уэбб».

«Хаббл» (слева) и «Джеймс Уэбб» (справа)

Возможности «Джеймса Уэбба»

Как мы уже убедились, полноценное изучение космоса без таких аппаратов, как «Хаббл», невозможно. Теперь постараемся понять концепцию «Джеймса Уэбба». Данный аппарат представляет собой орбитальную инфракрасную обсерваторию. Иными словами, ее задачей будет исследование теплового излучения космических объектов. Вспомним, что все тела, твердые и жидкие, нагретые до определенной температуры, излучают энергию в инфракрасном спектре. При этом длины волн, излучаемых телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения.

Среди главных задач будущего телескопа – выявление света первых звезд и галактик, которые появились после Большого взрыва. Это чрезвычайно сложно, так как движущийся в течение миллионов и миллиардов лет свет претерпевает существенные изменения. Так, видимое излучение той или иной звезды может быть полностью поглощено пылевым облаком. В случае с экзопланетами все еще труднее, так как эти объекты чрезвычайно малы (по астрономическим меркам, конечно) и «тусклы». У большей части планет средняя температура редко превышает 0°C, а в ряде случаев она может опускаться ниже –100°C. Обнаружить такие объекты очень сложно. Но аппаратура, установленная на телескопе «Джеймс Уэбб», позволит выявлять экзопланеты, температура поверхности которых достигает 300 К (что сравнимо с земным показателем), находящиеся дальше 12 астрономических единиц от своих звезд и удаленные от нас на расстояние до 15 световых лет.

Строительство телескопа «Джеймс Уэбб»

Новый телескоп был назван в честь второго руководителя NASA. Джеймс Уэбб был у руля космического ведомства США в период с 1961 по 1968 годы. Именно на его плечах лежал контроль над выполнением первых в США пилотируемых запусков в космос. Он сделал большой вклад в реализацию программы «Аполлон», целью которой была высадка человека на Луну.

Всего можно будет наблюдать планеты, расположенные у нескольких десятков звезд, «соседствующих» с нашим Солнцем. Причем «Джеймс Уэбб» сможет увидеть не только сами планеты, но и их спутники. Иными словами, нас может ожидать революция по части изучения экзопланет. И, возможно, даже не одна. Если же говорить о Солнечной системе, то и здесь могут быть новые важные открытия. Дело в том, что чувствительная аппаратура телескопа сможет обнаружить и изучить объекты системы, имеющие температуру –170° С.

Возможности нового телескопа позволят понять многие процессы, происходящие на заре существования Вселенной – заглянуть в сами ее истоки. Рассмотрим этот вопрос более детально: как известно, звезды, которые находятся на расстоянии 10 световых лет от нас, мы видим именно такими, какими они были 10 лет назад. Следовательно, расположенные на удалении более 13 млрд световых лет объекты мы наблюдаем в том виде, какими они являлись почти сразу после Большого взрыва, который, как считается, произошел 13,7 млрд лет назад. Приборы, установленные на новом телескопе, позволят увидеть на 800 миллионов дальше, чем «Хаббл», установивший рекорд в своей время. Так что можно будет увидеть Вселенную, какой она была всего лишь через 100 миллионов лет после Большого взрыва. Возможно, это перевернет представления ученых об устройстве Вселенной. Остается только дождаться начала работы телескопа, которое намечено на 2019 год. Предполагается, что аппарат будет эксплуатироваться в течение 5–10 лет, так что времени для новых открытий будет предостаточно.

«Джеймс Уэбб». Изображение 

Миссия: стоя на плечах гигантов

Хаббл, который размером с автобус, видит в первую очередь видимую область спектра и немного ультрафиолетового и инфракрасного. Его программа началась в 1990 году и благодаря дальнейшему обслуживаю продлится достаточно долго, чтобы передать эстафету Уэббу. Названный в честь Эдвина Хаббла, астронома, открывшего множество задач для изучения этим телескопом, он стал одним из самых продуктивных инструментов в научной истории, подарив нам феномены вроде рождения звезды и ее смерти, эволюции галактики и черных дыр (от теории до наблюдаемых фактов).

Вместе с Хабблом в большую четверку входит Комптоновская гамма-лучевая обсерватория (CGRO), Рентгеновская обсерватория «Чандра» и космический телескоп Спитцер.

CGRO, запущенная в 1991 и больше не обслуживаемая, обнаружила высокоэнергетические жестокие явления от 30 килоэлектрон-вольт (кэВ) до 30 гигаэлектрон-вольт (ГэВ), включая энергетические извержения ядер активных галактик.

«Чандра», запущенная в 1999 году и до сих пор остающаяся на плаву, наблюдает за черными дырами, квазарами и высокотемпературными газами в рентгеновском спектре, а также предоставляет важные данные о рождении, росте и конечной судьбе Вселенной.

Спитцер, который оккупировал орбиту прохождения Земли, изучает небо в тепловом инфракрасном (3-180 микрон) диапазоне, наблюдая за рождением звезд, галактическими центрами и холодными тусклыми звездами. Также он ищет те или иные молекулы в космосе.

Уэбб будет вглядываться в ближний и средний инфракрасный спектр, чему поспособствует его положение в точке L2 за луной и солнечные щиты, которые блокируют навязчивый свет Солнца, Земли и Луны, благоприятно влияя на охлаждение аппарата. Ученые надеются увидеть самые первые звезды Вселенной, образование и столкновение юных галактик, рождение звезд в протопланетарных системах — в которых, возможно, содержатся химические компоненты жизни.

Эти первые звезды могут хранить ключ к пониманию структуры Вселенной. Теоретически, где и как они формируются, напрямую связано с первыми моделями темной материи — невидимой таинственной субстации, которую обнаруживают по гравитационному воздействию — а их циклы жизни и смерти вызывают обратную связь, повлиявшую на формирование первых галактик. И поскольку сверхмассивные звезды с коротким периодом жизни примерно в 30-300 раз тяжелее нашего Солнца по массе (и в миллионы раз ярче), эти первые звезды могли бы взорваться в виде сверхновых, а после коллапсировать и образовать черные дыры, которые постепенно заняли центры большинства массивных галактик.

Видеть все это — безусловно, подвиг для инструментов, которые мы делали до сих пор. Благодаря новым инструментам, а также космическим аппаратам, мы сможем увидеть еще больше.

Nancy Grace Roman Telescope (США)

Телескоп Nancy Roman в представлении художника.

Космический телескоп NASA Nancy Grace Roman (или же WFIRST — Wide Field Infrared Survey Telescope, что означает Широкодиапазонная инфракрасная обсервтаория) назван в честь женщины-астронома «матери Хаббла» Нэнси Грейс Роман. Телескоп на данный момент находится на этапе начала сборки и его запуск планируется на 2025 год. Он в 100 раз превосходит возможности «Хаббла» и должен заняться самыми передовыми вопросами в космологии и исследовании экзопланет. Его коронограф сможет находить планеты-сироты, а также производить прямое наблюдения за другими мирами и изучать их атмосферы.

Телескоп RST также должен стать идеологическим наследником и заменой для сразу трех миссий — Хаббла, инфракрасного телескопа WISE и готовящейся к пуску обсерватории «Джеймс Уэбб». RST должна получить первые прямые фотографии экзопланет, раскрыть сущность темной энергии и понять, как распределена материя по Вселенной.

NIRCam

Камера ближнего инфракрасного диапазона NIRCam – основной блок формирования изображения. Это своего рода «главные глаза» телескопа. Рабочий диапазон камеры – от 0,6 до 5 микрометров. Снимки, сделанные ею, будут впоследствии изучаться другими инструментами. Именно при помощи NIRCam ученые хотят увидеть свет от самых ранних объектов Вселенной на заре их формирования. Кроме этого, за счет инструмента будут изучены молодые звезды нашей Галактики, создана карта темной материи и многое другое. Важная особенность NIRCam – наличие коронографа, позволяющего увидеть планеты вокруг далеких звезд. Это станет возможным благодаря подавлению света последних.

NIRCam 

Орбита «Джеймса Уэбба» и будущее проекта

В статье мы уже упоминали, что телескоп не будет кружить вокруг Земли, как это делает «Хаббл» — он будет отправлен подальше, на орбиту Солнца

Для чувствительных к свету инструментов важно, чтобы ни Луна, ни Земля не возникали в поле зрения телескопа. Одновременно «Джеймс Уэбб» должен постоянно находиться рядом с нашей планетой — это необходимо для эффективного управления и передачи данных

Как это удастся ученым?

Точка Лагранжа-2 (L2) — будущий центр орбиты «Джеймса Уэбба»

Привязать телескоп к планете и одновременно пустить его в свободное плавание удастся благодаря гало-орбите вокруг точки Лангранжа-2 системы Земля-Солнце. Звучит сложно — что же это значит? О точках Лагранжа мы уже не раз упоминали в своих статьях. В любой гравитационной системе, состоящей из двух массивных тел — например, Солнца и Земли — возникает 5 устойчивых точек, в которых маленькое тело, вроде спутника или астероида, может безбоязненно находиться на неизменной орбите. Более того, вокруг этой точки можно построить орбиту и вращаться, как будто она является материальным телом.

Это свойство и собирается использовать «Джеймс Уэбб» — он будет кружить вокруг точки Лагранжа 2, перемещаясь вокруг Солнца синхронно с Землей. Поэтому орбита и называется «гало» (от древнегреческого «halos» — диск, нимб). Только форма ее будет далека от идеального круга — она будет сильно вытянутой и больше напоминать эллипс. На это есть свои причины: к примеру, телескоп сможет периодически подходить к ближе к Земле и быстрее передавать данные. А еще так попросту легче — на округление орбиты пришлось бы потратить много топлива, что усложнит конструкцию ракеты, уменьшая тем самым полезную нагрузку телескопа.

Ракета «Ариан-5» на стартовом столе

На создателях «Джеймса Уэбба» лежит огромная ответственность. С тех пор как в 2018 году ракета «Ариан-5» выведет телескоп на орбиту, его нельзя будет улучшить, отремонтировать или изменить — сейчас не существует активных технологий, которые могли бы доставить к нему ремонтную бригаду. Со знаменитым «Хабблом» это случалось не раз. У него то отказывали важные элементы, то надо было доставить новое оборудование, а то случались форс-мажоры — как-то раз аномалия магнитного поля Земли заставляла телескоп регулярно выключаться.

Большинство ремонтных работ производили астронавты на шаттлах — но шаттлы больше не используются, а «Джеймс Уэбб» будет находиться в разы дальше «Хаббла». Конечно, новый телескоп будет защищен от многих известных неприятностей. Но никто не гарантирует появление новых, еще не познанных в космонавтике. Поэтому сейчас сборка «Уэбба» продвигается крайне медленно — каждая деталь и комплекс проходит серию стресс-тестов, дабы отсечь любой неприятный сюрприз в будущем.

MIRI

Прибор среднего инфракрасного диапазона работает в диапазоне 5–28 микрометров. Данное устройство включает в себя камеру с датчиком, который имеет разрешение 1024×1024 пикселя, а также спектрограф. Три массива мышьяко-кремниевых детекторов делают MIRI самым чувствительным прибором в арсенале телескопа «Джеймс Уэбб». Предполагается, что с помощью прибора среднего инфракрасного диапазона удастся различить рождающиеся звезды, многие ранее неизвестные объекты пояса Койпера, красное смещение очень далеких галактик, а также загадочную гипотетическую планету X (она же девятая планета Солнечной системы). Номинальной рабочей температурой для MIRI являются 7 К. Одна лишь пассивная система охлаждения не способна ее обеспечить: для этого используются два уровня. Сначала с помощью пульсационной трубы телескоп охлаждается до 18 К, а потом температура понижается до 7 К при помощи теплообменника с адиабатическим дросселированием.

MIRI

Телескоп Lynx

Основная конструкция.

Следующим телескопом идет Lynx – рентгеновский телескоп NASA нового поколения. На удивление название аппарата не является акронимом. Он назван в честь представителя семейства кошачьих – рыси (с английского «lynx»). В многочисленных культурах рыси считаются животными, обладающими сверхъестественной способностью видеть истинную природу вещей.

Рентгеновские лучи находятся на дальнем конце электромагнитного спектра (расположены между ультрафиолетовым излучением и гамма-излучением) и блокируются земной атмосферой. Поэтому для того чтобы их увидеть, необходим телескоп, находящийся в космосе. На данный момент флагманским рентгеновским телескопом является Космическая рентгеновская обсерватория «Чандра» NASA. Европейской космическое агентство собирается запустить в 2028 году свой рентгеновский телескоп ATHENA.

Концепт рентгеновского телескопа Lynx

Планируется, что Lynx будет работать в качестве партнера телескопу «Джеймс Уэбб», всматриваясь в края наблюдаемой Вселенной, раскрывая тайны появления первых сверхмассивных черных дыр и помогая составлять картину природы их формирования и слияния с течением времени. Он также сможет наблюдать за излучением, идущим от горячего газа ранней космической паутины, собирая данные о том, как формировались самые первые звезды и галактики.

После этого Lynx планируется использовать для исследования объектов, которыми до него занимались «Чандра», XMM Newton и другие рентгеновские телескопы: пульсаров, коллапсаров, сверхновых, черных дыр и многого другого. Даже обычные звезды могут создавать вспышки рентгеновского излучения, а значит и они станут объектами исследования.

Основная часть материи Вселенной сосредоточена в облаках газа, разогретого до миллиона градусов Кельвина. И если мы хотим увидеть Вселенную такую, какая она есть на самом деле, нам необходимо вести наблюдение в рентгеновском диапазоне волн.

Рентгеновские телескопы отличаются от космических обсерваторий, таких как «Хаббл», работающих в видимом диапазоне волн. Здесь не получится использовать обычное зеркало, в которое будут ударяться рентгеновские лучи. Вместо этого для фокусировки лучей необходимо использовать зеркала скользящего падения, позволяющие перенаправлять попадающие в них фотоны в детектор.

Художественное представление Космической рентгеновской обсерватории «Чандра». На данный момент это самый чувствительный рентгеновский телескоп

Благодаря использованию трехметровому наружному зеркалу Lynx будет в 50-100 раз чувствительнее, получит в 16 раз больший угол обзора и сможет улавливать фотоны в 800 раз быстрее «Чандры».

NIRSpec

При помощи спектрографа ближнего инфракрасного диапазона можно будет собирать информацию, касающуюся как физических свойств объектов, так и их химического состава. Спектрография занимает очень много времени, однако при помощи технологии микрозатворов можно будет проводить наблюдения за сотней объектов на площади неба 3×3 угловых минуты. Каждая ячейка микрозатворов NIRSpec имеет крышку, которая открывается и закрывается под влиянием магнитного поля. Ячейка имеет индивидуальное управление: в зависимости от того, закрыта она или открыта, информация об исследуемый части неба предоставляется или же, наоборот, блокируется.

NIRSpec 

Мечты астрономов и реальность

Представленные выше аппараты подогрели ваш энтузиазм в отношении будущего астрономии? Не спешите радоваться. Печальная новость заключается в том, что представленные в сегодняшней статье космические телескопы практически не имеют никаких шансов на то, чтобы однажды стать нашими глазами, следящими за дальними рубежами космического горизонта.

В начале этого месяца аэрокосмическое агентство NASA объявило о том, что собирается ограничить аппетиты планировщиков проектов по созданию новых космических телескопов и сокращает бюджеты разработкок до 3-5 миллиардов долларов. До этого момента инженеры даже не задумывались о каких-то рекомендациях, планах по бюджету и прочим бюрократическим вещам, они просто проектировали новые аппараты, которые смогут вывести науку на новый уровень.

Бюджет тех же телескопов HabEx, Lynx и OST согласно предварительным подсчетам может легко пересечь планку в 5 миллиардов долларов. А о том же LUVOIR придется вообще забыть – стоимость его создания может легко перевалить за отметку в 20 миллиардов долларов.

Даже несмотря на то, что Конгресс США настаивал на том, чтобы NASA получило больше средств на разработки, само аэрокосмическое агентство решило поумерить как свои аппетиты, так и аппетиты своих подрядчиков. И если учесть, насколько сильно за рамки бюджета вылилось создание передового космического телескопа «Джеймс Уэбб» и то, как у него обстоят дела сейчас, становится совершенно понятно, почему NASA решило пойти на такой шаг.

Изначально проект разработки «Джеймса Уэбба» был оценен в что-то среднее между 1,6 и 3,5 миллиардами долларов. В рамках этого бюджета аппарат планировалось запустить в период с 2007 по 2011 год. На текущий момент запуск запланирован самое раннее — на май 2020 года. При этом бюджет разработки по оценке Конгресса уже составляет 8,8 миллиардов долларов, а через 2 года может увеличиться до 10. Было бы заблуждением считать, что только у нас могут «пилить» бюджетные средства. Но, это полбеды. Основная проблема заключается в том, насколько безответственно основные подрядчики занимаются сборкой аппарата.

В последнем вибрационном испытании инженеры обнаружили, что из телескопа сыплются винты и шайбы. На минуточку речь идет не о сборке комода из IKEA, где в таком случае можно было просто сказать: «и так сойдет». Речь идет о телескопе, за почти 9 миллиардов долларов.

Финансовые аппетиты растут не только у создателей космического телескопа «Джеймс Уэбб». При изначальной оценке в 2 миллиарда долларов, текущая оценочная стоимость разработки телескопа WFIRST уже составляет 3,9 миллиарда долларов.

Простые ученые надеются на то, что все эти аппараты рано или поздно будут выведены на орбиту. Произойдет ли это до середины 2030-х годов, как было изначально запланировано в программах? Нужно настоящее чудо. На это чудо и остается пока уповать исследователям, считающим, что именно эти аппараты будут способны совершить новые важные открытия в астрономии.