Чему равна сумма углов выпуклого многоугольника

Содержание

Наши курсы по подготовке к ЕГЭ по математике, информатике и физике

К ЕГЭ можно подготовиться . У нас на сайте полно качественных материалов. Но вы должны знать что вы делаете. 

  • У вас должен быть план, чтобы вы шли от простого к сложному и не «захлебнулись». 
  • Вас должен кто-то проверять и указывать короткий путь, чтобы вы не теряли время.
  • Вас должен кто-то мотивировать, чтобы вы не бросили все.

Если у вас с этим сложности, приходите к нам.

  • Начните с нашего гида о том как подготовиться к ЕГЭ по математике.
  • Посетите наши бесплатные вебинары по математике, информатике и физике.

И если вам нужен действительно высокий балл, приходите на наши курсы: 

  • Подготовка к ЕГЭ по математике
  • Подготовка к ЕГЭ по информатике
  • Подготовка к ЕГЭ по физике

Сумма внутренних углов выпуклого многоугольника

Сумма внутренних углов выпуклого многоугольника равна , где — количество сторон многоугольника.

Как доказать эту формулу?

Прежде чем перейти к доказательству этого утверждения, вспомним, какой многоугольник называется выпуклым. Выпуклым называется такой многоугольник, который целиком находится по одну сторону от прямой, содержащей любую его сторону. Например такой, который изображен на этом рисунке:

Если же многоугольник не удовлетворяет указанному условию, то он называется невыпуклым. Например, такой:

Сумма внутренних углов выпуклого многоугольника равна , где — количество сторон многоугольника.

Доказательство этого факта основано на хорошо известной всем школьникам теореме о сумме углов в треугольнике. Уверен, что и вам эта теорема знакома. Сумма внутренних углов треугольника равна .

Идея состоит в том, чтобы разбить выпуклый многоугольник на несколько треугольников. Сделать это можно разными способами. В зависимости от того, какой способ мы выберем, доказательства будут немного отличаться.

1. Разобьём выпуклый многоугольник на треугольники всеми возможными диагоналями, проведёнными из какой-нибудь вершины. Легко понять, что тогда наш n-угольник разобьётся на треугольника:

Причём сумма всех углов всех получившихся треугольников равна сумме углов нашего n-угольника. Ведь каждый угол в получившихся треугольниках является частичной какого-то угла в нашем выпуклом многоугольнике. То есть искомая сумма равна .

2. Можно также выбрать точку внутри выпуклого многоугольника и соединить её со всеми вершинами. Тогда наш n-угольник разобьется на треугольников:

Причём сумма углов нашего многоугольника в этом случае будет равна сумме всех углов всех этих треугольников за вычетом центрального угла, который равен . То есть искомая сумма опять же равна .

Архив записей

Архив записейВыберите месяц Сентябрь 2021  (1) Июль 2021  (1) Июнь 2021  (2) Май 2021  (1) Апрель 2021  (1) Март 2021  (1) Сентябрь 2020  (1) Август 2020  (2) Июль 2020  (2) Июнь 2020  (2) Декабрь 2019  (3) Ноябрь 2019  (4) Октябрь 2019  (3) Сентябрь 2019  (2) Май 2019  (1) Октябрь 2018  (1) Июнь 2018  (1) Апрель 2018  (1) Январь 2018  (1) Ноябрь 2017  (1) Октябрь 2017  (1) Сентябрь 2017  (2) Август 2017  (4) Июль 2017  (5) Июнь 2017  (4) Май 2017  (5) Апрель 2017  (2) Март 2017  (1) Февраль 2017  (1) Январь 2017  (3) Декабрь 2016  (1) Ноябрь 2016  (2) Октябрь 2016  (3) Сентябрь 2016  (4) Август 2016  (6) Июль 2016  (9) Июнь 2016  (4) Май 2016  (5) Апрель 2016  (6) Март 2016  (5) Февраль 2016  (8) Январь 2016  (8) Декабрь 2015  (9) Ноябрь 2015  (4) Июль 2015  (1) Март 2015  (1) Февраль 2015  (1) Январь 2015  (1) Июль 2014  (1) Июль 2013  (1) Март 2013  (2) Декабрь 2012  (1) Ноябрь 2012  (1) Сентябрь 2012  (3) Август 2012  (4) Июль 2012  (4) Июнь 2012  (4) Май 2012  (4) Апрель 2012  (5) Март 2012  (7) Февраль 2012  (8) Январь 2012  (7) Декабрь 2011  (5) Ноябрь 2011  (1)

Понятие правильного многоугольника

У выпуклого многоугольника могут быть одинаковы одновременно и все стороны, и все углы. В таком случае он именуется правильным многоугольником.

Нам уже известны некоторые правильные многоуг-ки. Например, правильным является равносторонний треугольник. У него все стороны одинаковы по его определению, а все углы составляют по 60°. Поэтому иногда его так и называют – правильный треугольник. Среди четырехугольников правильной фигурой является квадрат, у которого также по определению одинаковы стороны, а углы составляют уже по 90°.

Заметим, что бывают фигуры, у которых одинаковы все стороны, а углы различны. Примером такой фигуры является ромб. Возможна и обратная ситуация – все углы у фигуры одинаковы, но стороны отличаются своей длиной. Таковым является прямоугольник

Важно понимать, такие фигуры (в частности, ромб и прямоугольник) НЕ являются правильными

Для любого заданного числа n, начиная от n = 3, можно построить правильный n-угольник. На рисунке ниже показано несколько примеров таких n-угольников:

Существует зависимость, которая позволяет определить величину угла правильного многоугольника. Мы уже знаем, что в любом выпуклом n-угольнике сумма углов равна величине 180°(n– 2). Обозначим угол правильного многоуг-ка буквой α. Так как у n-угольника ровно n углов, и все они одинаковы, мы можем записать равенство:

Легко проверить, что эта формула верна для равностороннего треуг-ка и квадрата и позволяет правильно определить углы в этих фигурах. Для треугольника n = 3, поэтому мы получаем 60°:

Задание. Какова величина углов в правильном пятиугольнике, шестиугольнике, восьмиугольнике, пятидесятиугольнике?

Решение. Надо просто подставить в формулу число сторон правильного многоугольник. Сначала считаем для пятиугольника:

Задание. Сколько сторон должно быть у правильного многоуг-ка, чтобы каждый угол в нем был равен 179°?

Решение. В формулу 

Задание. Может ли существовать правильный многоуг-к, угол которого равен 145°?

Решение. Предположим, что он существует. Тогда по аналогии с предыдущей задачей найдем количество его сторон:

Получили не целое, а дробное количество сторон. Естественно, что это невозможно, а потому такой многоуг-к существовать не может.

Ответ: не может.

Описанная и вписанная окружности правильного многоугольника

Докажем важную теорему о правильном многоуг-ке.

Для доказательства обозначим вершины произвольного правильного n-угольника буквами А1, А2, А3…Аn. Далее проведем биссектрисы углов ∠А1 и ∠А2. Они пересекутся в некоторой точке О. Соединим О с другими вершинами многоуг-ка отрезками ОА3, ОА4 и т. д.

∠А1 и ∠А2 одинаковы по определению правильного многоуг-ка:

Из этого факта вытекает два равенства:

Получается, что ОА3 – это также биссектриса ∠А3. Тогда, повторив все предыдущие рассуждения, мы можем доказать равенство, аналогичное (1):

Это равенство означает, что точка О равноудалена от вершин многоуг-ка. Значит, можно построить окружность с центром в О, на которой будут лежать все вершины многоуг-ка:

Естественно, существует только одна такая описанная окружность, ведь через любые три точки, в частности, через А1, А2 и А3, можно провести только одну окружность, ч. т. д.

Продолжим рассматривать выполненное нами построение с описанной окружностью. Ясно, что ∆ОА1А2, ∆ОА2А3, ∆ОА3А4, …, равны, ведь у них одинаковы по 3 стороны. Опустим из О высоты ОН1, ОН2, ОН3… на стороны многоуг-ка.

Так как высоты проведены в равных треуг-ках, то и сами они равны:

Теперь проведем окружность, центр которой находится в О, а радиус – это отрезок ОН1. Он должен будет пройти и через точки Н2, Н3, … Нn. Причем отрезки ОН1, ОН2, ОН3 окажутся радиусами. Так как они перпендикулярны сторонам многоуг-ка, то эти самые стороны будут касательными к окружности (по признаку касательной). Стало быть, эта окружность является вписанной:

Ясно, что такая окружность будет единственной вписанной. Если бы существовала вторая вписанная окружность, то ее центр был бы равноудален от сторон многоуг-ка, а потому лежал бы в точке пересечения биссектрис углов ∠А1, ∠А2, ∠А3, то есть в точке О. Так как расстояние от О до А1А2 – это отрезок ОН1, то именно такой радиус был бы у второй окружности. Получается, что вторая окружность полностью совпала бы с первой, так как их центр находился бы в одной точке, и радиусы были одинаковы.

Примечание. Точка, которая центром и вписанной, и описанной окружности, именуется центром правильного многоуг-ка.

Ещё раз вернемся к приведенному доказательству и заметим, что высоты ОН1, ОН2, ОН3,… проведены в равнобедренных треуг-ках∆ОА1А2, ∆ОА2А3, ∆ОА3А4,… Следовательно, эти высоты являются ещё и медианами, то есть точки Н1, Н2, Н3,… – это середины сторон многоуг-ка.

Задание. Могут ли две биссектрисы, проведенные в правильном многоуг-ке, быть параллельными друг другу?

Решение. Центр правильного многоуг-ка находится в точке пересечения всех его биссектрис. То есть любые две биссектрисы будут иметь хотя бы одну общую точку. Параллельные же прямые общих точек не имеют. Получается, что биссектрисы не могут быть параллельными.

Ответ: не могут.

Примечание. Аналогичное утверждение можно доказать и для серединных перпендикуляров, проведенных к сторонам правильного многоуг-ка.

Варианты определений[ | ]

Существуют три различных варианта определения многоугольника; последнее определение является наиболее распространённым.

  • Плоская замкнутая ломаная — наиболее общий случай;
  • Плоская замкнутая ломаная без самопересечений, любые два соседних звена которой не лежат на одной прямой;
  • Часть плоскости, ограниченная замкнутой ломаной без самопересечений — плоский многоугольник ; в этом случае сама ломаная называетсяконтуром многоугольника.

Существуют также несколько вариантов обобщения данного определения, допускающие бесконечное число звеньев ломаных, несколько несвязных граничных ломаных, ломаные в пространстве, произвольные отрезки непрерывных кривых вместо отрезков прямых и др.

Понятие многоугольника. Что такое многоугольник

Многоуго́льник — это геометрическая фигура, представляющая собой замкнутую ломаную линию.

Существуют три варианта определения многоугольников:

  • Многоугольник — это плоская замкнутая ломаная линия;
  • Многоугольник — это плоская замкнутая ломаная линия без самопересечений;
  • Многоугольник — это часть плоскости, которая ограничена замкнутой ломаной.

Вершины ломаной называются вершинами многоугольника, а отрезки — сторонами многоугольника.

Вершины многоугольника называются соседними, если они являются концами одной из его сторон.

Отрезки, соединяющие несоседние вершины многоугольника, называются диагоналями.

Углом (или внутренним углом) многоугольника при данной вершине называется угол, образованный его сторонами, сходящимися в этой вершине, и находящийся во внутренней области многоугольника.

Внешним углом выпуклого многоугольника при данной вершине называется угол, смежный внутреннему углу многоугольника при этой вершине. В общем случае внешний угол это разность между 180° и внутренним углом

Многоугольник называют выпуклым, при условии, что одно из следующих условий является верным:

  • Выпуклый многоугольник лежит по одну сторону от любой прямой, соединяющей его соседние вершины;
  • Выпуклый многоугольник является пересечением нескольких полуплоскостей;
  • Любой отрезок с концами в точках, принадлежащих выпуклому многоугольнику, полностью ему принадлежит.

Выпуклый многоугольник называется правильным, если у него все стороны равны и все углы равны, например равносторонний треугольник, квадрат и правильный пятиугольник.

Выпуклый многоугольник называется вписанным в окружность, если все его вершины лежат на одной окружности.

Выпуклый многоугольник называется описанным около окружности, если все его стороны касаются некоторой окружности.

Классификация (виды) многоугольников

Классификация многоугольников по видам может быть по многим свойствам, самые главные из них:

  • количество вершин
  • выпуклость
  • правильность
  • возможность вписать или описать окружность

треугольникчетырехугольникквадратлюбого треугольника всегда можно описать окружность

Правильный семиугольник (понятие и определение):

Правильный семиугольник – это правильный многоугольник с семью сторонами.

В свою очередь правильный многоугольник – это многоугольник, у которого все стороны и углы одинаковые.

Правильный семиугольник – это семиугольник, у которого все стороны равны, а все внутренние углы равны 128 4/7° ≈ 128,571°.

Рис. 3. Правильный семиугольник

Правильный семиугольник имеет 7 сторон, 7 углов и 7 вершин.

Углы правильного семиугольника образуют семь равнобедренных треугольников.

Правильный семиугольник можно невозможно построить с помощью циркуля и линейки, но можно построить с помощью циркуля и невсиса, то есть размеченной линейки, на которой можно делать отметки и с помощью которой можно проводить прямые, проходящие через какую-нибудь точку, причём отмеченные на линейке точки будут принадлежать данным линиям (прямым или окружностям).

Обобщения

Идея многоугольника была обобщена по-разному. Некоторые из наиболее важных включают:

  • Сферическая полигон представляет собой схему дуг больших кругов (стороны) и вершины на поверхности сферы. Он допускает двуугольник , многоугольник, имеющий только две стороны и два угла, что невозможно на плоской плоскости. Сферические многоугольники играют важную роль в картографии (картография) и построении визофф в части единых многогранников .
  • Пространственный многоугольник не лежит в одной плоскости, но зигзаги в трех (или более) размерах. В Петри многоугольники регулярных многогранников хорошо известные примеры.
  • Apeirogon бесконечная последовательность сторон и углов, которые не закрыт , но не имеет конца , потому что она простирается до бесконечности в обоих направлениях.
  • Перекос apeirogon бесконечная последовательность сторон и углов , которые не лежат в одной плоскости.
  • Комплекс многоугольник является конфигурация аналогичен обычным многоугольник, который существует в комплексной плоскости двух реальных и два воображаемых размеров.
  • Абстрактный многоугольник является алгебраическим частично упорядоченным множеством представляющего различных элементов (стенки, вершина и т.д.) и их соединение. Говорят, что реальный геометрический многоугольник является реализацией связанного с ним абстрактного многоугольника. В зависимости от отображения могут быть реализованы все описанные здесь обобщения.
  • Полиэдр представляет собой трехмерное твердые ограниченный плоскими полигональные поверхности, аналогичных многоугольник в двух измерениях. Соответствующие формы в четырех или более измерениях называются многогранниками . (В других соглашениях слова многогранник и многогранник используются в любом измерении с той разницей, что многогранник обязательно ограничен.)

Свойства правильного семиугольника:

1. Все стороны правильного семиугольника равны между собой.

a1 = a2 = a3 = a4= a5 = a6 = a7.

2. Все углы равны между собой и составляют 128 4/7° ≈ 128,571°.

α1 = α2 = α3 = α4 = α5 = α6 = α7 = 128 4/7° ≈ 128,571°.

Рис. 4. Правильный семиугольник

3. Сумма внутренних углов любого правильного семиугольника равна 900°.

4. Все биссектрисы углов между сторонами равны и проходят через центр правильного семиугольника O.

Рис. 5. Правильный семиугольник

5. Количество диагоналей правильного семиугольника равно 14.

Рис. 6. Правильный семиугольник

6. Центр вписанной окружности O1 совпадает с центром описанной окружности O2, что и образуют центр многоугольника O.

Рис. 7. Правильный семиугольник

История

Исторический образ многоугольников (1699 г.)

Полигоны известны с давних времен. В правильные многоугольники были известны древним грекам, с пентаграммой , невыпуклая правильный многоугольник ( звезда многоугольника ), появившись в начале нашей эры 7 -го века на Krater по Аристофана , найденного в Цере и теперь в Капитолийском музее .

Первое известное систематическое исследование невыпуклых многоугольников в целом было сделано Томасом Брэдвардином в 14 веке.

В 1952 году Джеффри Колин Шепард обобщил идею многоугольников на комплексную плоскость, где каждое реальное измерение сопровождается мнимым , чтобы создать сложные многоугольники .

Площадь неправильного десятиугольника по гауссовским определителям

В общем, не существует единой формулы для определения площади неправильного многоугольника, поскольку стороны и углы разные. Однако его можно найти, зная координаты вершин и вычисливГауссовские детерминанты:

-Позвоним (хп , Yп ) к координатам вершин, причем п варьируется от 1 до 10.

-Вы можете начать с любой вершины, до которой координаты (x1, Y1 ). Теперь нам нужно подставить значения каждой координаты в эту формулу:

Где детерминанты — это именно операции в скобках.

-Важно отметить, что последний определитель снова включает первую вершину вместе с последней. Для десятиугольника это будет выглядеть так:. (Икс10Y1 — Икс1Y10)

(Икс10Y1 — Икс1Y10)

Важный: Полоски имеют абсолютное значение и означают, что окончательный результат дается с положительным знаком. всегда.

Процедура может быть трудоемкой, если у фигуры много вершин, в случае с десятиугольником — 10 операций, поэтому желательно составить таблицу или список.

Связанные определения[ | ]

  • Вершины многоугольника называются соседними , если они являются концами одной из его сторон.
  • Стороны многоугольника называются смежными , если они прилегают к одной вершине.
  • Общая длина всех сторон многоугольника называется его периметром .
  • Диагоналями называются отрезки, соединяющие несоседние вершины многоугольника.
  • Углом (иливнутренним углом ) плоского многоугольника при данной вершине называется угол между двумя сторонами, сходящимися в этой вершине. Угол может превосходить 180 ∘ {\displaystyle 180^{\circ }} в том случае, если многоугольник невыпуклый. Число углов простого многоугольника совпадает с числом его сторон или вершин.
  • Внешним углом выпуклого многоугольника при данной вершине называется угол, смежный внутреннему углу многоугольника при этой вершине. В случае невыпуклого многоугольникавнешний угол — разность между 180 ∘ {\displaystyle 180^{\circ }} и внутренним углом, он может принимать значения от − 180 ∘ {\displaystyle -180^{\circ }} до 180 ∘ {\displaystyle 180^{\circ }} .
  • Перпендикуляр, опущенный из центра вписанной окружности правильного многоугольника на одну из сторон, называется апофемой.

Правильные многоугольники

Так, например: квадрат – правильный четырехугольник, а вот прямоугольник – нет, хоть и все углы у него равные, и ромб – нет, хоть и все стороны равны. Нужно непременно, чтобы все углы и все стороны были равны.

Первый вопрос:

А можно ли найти величину одного (а значит и всех) угла правильного многоугольника?

И ответ: можно!

Давай посмотрим на примере.

Пусть есть, скажем, правильный восьмиугольник:

Сумма всех его углов равна \( \displaystyle 180{}^\circ \left( 8-2 \right)=1080{}^\circ \). 

А сколько всего углов? Восемь конечно, и они все одинаковые.

Значит любой угол, скажем \( \displaystyle \angle A\) можно найти:

\( \displaystyle \angle A=\frac{1080{}^\circ }{8}=135{}^\circ \).

Что мы еще должны знать?

При этом центры этих окружностей совпадают.

Смотри, как это выглядит!

И более того, всегда можно посчитать соотношение между радиусом вписанной и описанной окружностей.

Давай опять на примере восьмиугольника.

Посмотри на \( \displaystyle \Delta OKG\). В нем \( \displaystyle OK=r,OG=R.\)

Значит, \( \displaystyle \frac{r}{R}=\sin \angle x\) – и это не только в восьмиугольнике!

Чему же равен в нашем случае \( \displaystyle \angle x\)?

Ровно половине \( \displaystyle \angle G\), представь себе!

Значит \( \displaystyle \angle x=\frac{135{}^\circ }{2}=67,5{}^\circ \).

Смешно? Но так и есть! Поэтому для восьмиугольника \( \displaystyle \frac{r}{R}=\sin 67,5{}^\circ \).

Может возникнуть еще один вопрос: а можно ли посчитать углы «около» точки \( \displaystyle O\)? И тот же ответ: конечно можно!

Опять рассмотрим наш восьмиугольник. Вот мы хотим найти \( \displaystyle \angle \alpha\) (то есть \( \displaystyle \angle HOG\)).

Мы знаем, что в \( \displaystyle \Delta HOG\) сумма углов равна \( \displaystyle 180{}^\circ \). Значит:

\( \displaystyle \underbrace{\angle x+\angle x}_{135{}^\circ}+\angle \alpha =180{}^\circ \)Потому \( \displaystyle \angle \alpha =180{}^\circ -135{}^\circ =45{}^\circ \)

Простейшие четырёхугольники

Любой многоугольник, который состоит из четырёх углов, называют четырёхугольным. Он относится к простейшим геометрическим телам. Если о нём ничего не известно, его считают произвольным, то есть фигурой, у которой нет особенных углов или сторон. В другом случае четырёхугольники имеют собственные названия.

Наиболее часто приходится сталкиваться со следующими видами:

  • прямоугольник — четырёхугольник, у которого все углы прямые, то есть равняются 900;
  • ромб — фигура с четырьмя сторонами одинаковой длины;
  • квадрат — многоугольник, удовлетворяющий одновременно условиям ромба и прямоугольника.

Для всех этих видов характерно, что каждая из фигур имеет 2 пересекающиеся диагонали. Причём точка их соприкосновения делит отрезок на 2 равные части. Кроме этого, для прямоугольника и квадрата длина одной диагонали равна другой. Если у четырёхугольного прямоугольника обозначить стороны a и b, противоположные им грани также будут a и b.

Каждый отрезок, образующий многоугольник, имеет свою длину. При их сложении получается периметр фигуры. Для его обозначения используют заглавную латинскую букву P. Например, если есть многоугольник, образованный сторонами AB, BC, CA, его периметр будет равняться: Pabc = AB + BC + CA

Можно обратить внимание, что количество углов соответствует числу сторон, складываемых для нахождения P. Это важный параметр, позволяющий оценить размер фигуры

Из-за особенностей прямоугольника формулу для расчёта периметра можно переписать так: P = 2*(a + b). В то же время площадь такой фигуры находится путём простого перемножения примыкающих сторон: S = a*b. Параметры квадрата можно вычислить, зная длину только одной стороны. Всё дело в том, что длины отрезков, из которых он состоит, равны друг другу, поэтому для квадрата периметр находится как P = 4*a, а площадь: S = a*a = a2.

В природе

Дорога гигантов в Северной Ирландии

Многоугольники появляются в горных породах, чаще всего в виде плоских граней кристаллов , где углы между сторонами зависят от типа минерала, из которого сделан кристалл.

Правильные шестиугольники могут возникать, когда при охлаждении лавы образуются области плотно упакованных столбов базальта , которые можно увидеть на Мосту гигантов в Северной Ирландии или на Дьявольской столбе в Калифорнии .

В биологии поверхность восковых сот, созданных пчелами, представляет собой массив шестиугольников , а стороны и основание каждой соты также представляют собой многоугольники.

Семиугольник, выпуклый и невыпуклый семиугольник:

Семиугольник – это многоугольник с семью углами.

Семиугольник – это многоугольник, общее количество углов (вершин) которого равно семи.

Семиугольник может быть выпуклым и невыпуклым.

Выпуклым многоугольником называется многоугольник, все точки которого лежат по одну сторону от любой прямой, проходящей через две его соседние вершины. Невыпуклыми являются все остальные многоугольники.

Соответственно выпуклый семиугольник – это семиугольник, у которого все его точки лежат по одну сторону от любой прямой, проходящей через две его соседние вершины.

Звёздчатый семиугольник – семиугольник, у которого все стороны и углы равны, а вершины совпадают с вершинами правильного семиугольника многоугольника. Стороны звёздчатого семиугольника могут пересекаться между собой.

Рис. 1. Выпуклый семиугольник

Рис. 2. Невыпуклый семиугольник

Сумма внутренних углов любого выпуклого семиугольника равна 900°.

Построение правильных многоугольников

При использовании транспортира или иного прибора, позволяющего откладывать заранее заданные углы, построение правильного многоуг-ка проблем не вызывает. Например, пусть надо построить пятиугольник со стороной, равной 5 см. Сначала по известной формуле вычисляем величину его угла:

Однако напомним, что в геометрии большой интерес вызывают задачи, связанные с построением с помощью всего двух инструментов – циркуля и линейки, то есть без использования транспортира. В таком случае построение многоугольников правильной формы становится значительно более сложной задачей. Если речь идет не о таких простых фигурах, как квадрат и равносторонний треугольник, то при построении обычно приходится использовать описанную окружность.

Сначала рассмотрим построение правильного шестиугольника по заранее заданной стороне. Ранее мы уже узнали, что его сторона имеет такую же длину, как и радиус описанной окружности:

a6 = R

На основе этого факта предложен следующий метод построения шестиугольника. Сначала строится описанная окружность, причем в качестве ее радиуса берется заданная сторона а6. Далее на окружности отмечается произвольная точка А, которая будет первой вершиной шестиугольника. Из нее проводится ещё одна окружность радиусом а6. Точки, где она пересечет описанную окружность (В и F), будут двумя другими вершинами шестиугольника. Наконец, и из точек B и F проводим ещё две окружности, которые пересекутся с исходной окружностью в точках С и F. Наконец, из С (можно и из F)провести последнюю окружность и получить точку D. Осталось лишь соединить все точки на окружности (А, В, С, D, Еи F):

Данное построение довольно просто. Однако для пятиугольника построение несколько более сложное, а для семиугольника и девятиугольника вообще невозможно осуществить точное построение. Этот факт был доказан только в 1836 г. Пьером Ванцелем.

Если удалось возможно построить правильный n-угольник, вписанный в окружность, то несложно на его основе построить многоуг-к, у которого будет в два раза больше сторон (его можно назвать 2n-угольником) и который будет вписан в ту же окружность. Рассмотрим это построение на примере квадрата и восьмиугольника.

Изначально дан квадрат, вписанный в окружность. Надо построить восьмиугольник, вписанный в ту же окружность. Обозначим любые две вершины квадрата буквами А и В. Для начала нам надо разбить дугу ⋃АВ на две равные дуги. Для этого мы проводим из А и В окружности радиусом АВ. Они пересекутся в некоторых точках С и D. Соединяем их отрезком, который в свою очередь пересечется с исходной окружностью в точке Е.

Е – это середина дуги ⋃АВ. Точки А, В и Е как раз являются тремя первыми точками восьмиугольника. Для получения остальных точек необходимо из вершин квадрата строить окружности радиусом АЕ. Точки, где эти окружности пересекутся с исходной окружностью, и будут вершинами восьмиугольника. Также его вершинами являются вершины самого квадрата:

Аналогичным образом можно из шестиугольника получить 12-угольник, из восьмиугольника – 16-угольник, из 16-угольника – 32-угольник. То есть можно удвоить число сторон многоуг-ка.

Древние греки умели строить правильные многоуг-ки с 3, 4, 5, 6 и 15 сторонами, а также умели на их основе строить многоуг-ки с вдвое большим числом сторон. Лишь в 1796 г. Карл Гаусс смог построить 17-угольник. Также удалось найти способ построения 257-угольника и 65537-угольника, причем описание построения 65537-угольника занимает более 200 страниц.

В этом уроке мы узнали о правильных многоуг-ках и их свойствах

Особенно важно то, что для каждого такого многоуг-ка можно построить описанную и вписанную окружность, причем их центры совпадают. Это позволяет использовать правильные многоуг-ки для более глубокого исследования свойств окружности

Теорема об углах

Многоугольники бывают выпуклые и вогнутые. Чтобы узнать, какой из них приходится рассматривать в том или ином случае, можно сделать следующее. Через каждую сторону провести прямую. Если по отношению к любой из них фигура будет лежать в одной полуплоскости относительно неё, многоугольник считается выпуклым, в ином случае — вогнутым.

Для первого типа существуют важные соотношения. Пусть имеется произвольный многоугольник. Интерес представляет сумма всех его углов. Посчитать её можно следующим образом. Нужно взять любую вершину и соединить её со всеми оставшимися прямой линией. В результате получится несколько треугольников. Затем нужно посчитать их количество. Например, в шестиугольнике их будет 4, восьмиугольнике — 6. Это число легко находится, так как существует правило, согласно которому в любой n-угольной фигуре можно построить n-2 треугольника.

В каждом треугольнике сумма углов равняется 180 градусов. Отсюда следует, что искомая сумма будет равняться 1800 * (n — 2). Например, для восьмиугольного она равняется 180 * (8 — 2) = 10800. Для многоугольника можно вести понятие внешнего угла.

К любой вершине можно построить 2 таких смежных угла. Если взять каждый из них, то их сумма будет равняться: a1 + a2 +…+ an = 3600. Доказать это можно так. Угол a1 равняется (180 — ∠A1), a2 = (180 — ∠A2) и так далее. Таких слагаемых будет n штук. Тогда можно записать, 180 * n — 180 * (n — 2) = 180 * 2 = 360. Таким образом, сумма всех внешних углов равняется 3600.

Лучше всего понять сказанное можно, рассмотрев пример, рассчитанный на учащихся средней школы. Пусть есть правильный шестиугольник. Нужно определить его угол. У такой фигуры все стороны, а значит и углы равны. Для начала следует определить их сумму. Она будет равняться 180 * (4−2) = 1800 * 4 = 7200. Но так как это шестиугольник, результат необходимо поделить на 6. Таким образом, искомый угол правильной фигуры будет равняться 120 градусам.

Общие свойства[ | ]

Теорема о сумме углов многоугольника

Сумма внутренних углов простого плоского n {\displaystyle n} -угольника равна 180 ∘ ( n − 2 ) {\displaystyle 180^{\circ }(n-2)} . Сумма внешних углов не зависит от числа сторон и всегда равна 360 ∘ . {\displaystyle 360^{\circ }.}

Площадь

Пусть { ( X i , Y i ) } , i = 1 , 2 , . . . , n {\displaystyle \{(X_{i},Y_{i})\},i=1,2,…,n} — последовательность координат соседних друг другу вершин n {\displaystyle n} -угольника без самопересечений . Тогда его площадь вычисляется по формуле Гаусса:

S = 1 2 | ∑ i = 1 n ( X i + X i + 1 ) ( Y i − Y i + 1 ) | {\displaystyle S={\frac {1}{2}}\left|\sum \limits _{i=1}^{n}(X_{i}+X_{i+1})(Y_{i}-Y_{i+1})\right|} , где ( X n + 1 , Y n + 1 ) = ( X 1 , Y 1 ) {\displaystyle (X_{n+1},Y_{n+1})=(X_{1},Y_{1})} .

Если даны длины сторон многоугольника и азимутальные углы сторон, то площадь многоугольника может быть найдена по формуле Саррона .

Площадь правильного n {\displaystyle n} -угольника вычисляется по одной из формул:

половина произведения периметра n {\displaystyle n} -угольника на апофему:

S = n 4 a 2 ctg ⁡ π n {\displaystyle S={\frac {n}{4}}\ a^{2}\mathop {\mathrm {} } \,\operatorname {ctg} {\frac {\pi }{n}}} .

S = 1 2 n R 2 sin ⁡ 360 ∘ n ; {\displaystyle S={\frac {1}{2}}nR^{2}\sin {\frac {360^{\circ }}{n}};}

S = n r 2 t g π n {\displaystyle S=nr^{2}\mathop {\mathrm {tg} } \,{\frac {\pi }{n}}}

где a {\displaystyle a} — длина стороны многоугольника, R {\displaystyle R} — радиус описанной окружности, r {\displaystyle r} — радиус вписанной окружности.

Квадрируемость фигур

С помощью множества многоугольников определяется квадрируемость и площадь произвольной фигуры на плоскости. Фигура F {\displaystyle F} называется квадрируемой

, если для любого ε > 0 {\displaystyle \varepsilon >0} существует пара многоугольников P {\displaystyle P} и Q {\displaystyle Q} , таких, что P ⊂ F ⊂ Q {\displaystyle P\subset F\subset Q} и S ( Q ) − S ( P ) < ε {\displaystyle S(Q)-S(P)<\varepsilon } , где S ( P ) {\displaystyle S(P)} обозначает площадь P {\displaystyle P} .

Неправильный десятиугольник

Неправильный десятиугольник не является равносторонним или равноугольным, и обычно ему не хватает симметрии правильной фигуры, хотя некоторые десятиугольники могут иметь ось симметрии.

Они также могут быть выпуклыми или вогнутыми, если внутренние углы превышают 180º.

Неправильный десятиугольник на фиг. 1 вогнут, поскольку некоторые из его внутренних углов больше 180 °. Ясно, что существует множество комбинаций углов и сторон, которые приводят к неправильному десятиугольнику.

В любом случае верно, что:

-Внутренние углы неправильного десятиугольника также составляют в сумме 1440º.

-Также имеет 35 диагоналей.