График средней глобальной температуры за последние 66 млн лет

Крупные землетрясения происходят медленно

Фото: Angelo Giordano / Pixabay

Землетрясение наблюдается, когда горные породы начинают двигаться вдоль разломов. Разломы бывают разными. Разлом может быть небольшой трещиной в земной коре, и тогда землетрясение тоже будет небольшим. Либо линия разлома может находиться на стыке двух тектонических плит. Движущиеся плиты обладают огромной энергией, и когда они двигаются, то результаты могут быть катастрофическими.

Многим крупным землетрясениям предшествуют сейсмические толчки, но учёные были очень удивлены когда узнали, что скалы могут перемещается друг относительно друга вообще без всяких сотрясений. Они смогли это выяснить после развёртывания чрезвычайно чувствительного сейсмического оборудования вдоль разлома Сан-Андреас в Калифорнии (там, где тихоокеанская и североамериканская тектонические плиты скользят мимо друг друга), и вдоль Альпийского разлома в Новой Зеландии (там, где тихоокеанская плита скользит вдоль австралийской континентальной плиты). У Альпийского разлома было в прошлом несколько крупных землетрясений, однако в его центральной части всегда было необычно тихо. Учёные начали внимательно следить за этой частью, полагая, что в ней могли скопиться запасы энергии, способные вызвать катастрофу апокалиптического масштаба. Вместо этого они обнаружили «сейсмический тремор», серию мелких землетрясений, каждое из которых длилось примерно 30 минут. Нечто подобное было зафиксировано и вдоль разлома Сан-Андреас, хотя тут учёные не совсем уверены, что это «тремор». Это может быть накоплением напряжения перед следующим землетрясением, или это может быть небольшими сбросами накопившейся энергии, которые помогут снизить интенсивность будущего большого землетрясения, которое произойдёт, когда в зоне разлома опять начнётся движение.

Региональная температура

Верхний рисунок (полный): 196 строк представляют 196 стран, сгруппированных по континентам. Каждая строка имеет 118 цветные годовые температуры, показывая 1901 — 2018 согревающие модели в каждом регионе и стране. — нижний график (резюме): глобальная средняя 1901 — 2018 . — Визуализация данных: согревающие полосы .


Температура поверхности суши повышается быстрее, чем температура океана, поскольку океан поглощает около 92% избыточного тепла, генерируемого изменением климата. Диаграмма с данными НАСА, показывающая, как температура воздуха на суше и на море изменилась по сравнению с доиндустриальным исходным уровнем.

Температурные тренды с 1901 года положительны на большей части земной поверхности, за исключением Атлантического океана к югу от Гренландии, юго-востока США и некоторых частей Боливии . Наиболее сильное потепление наблюдается во внутренних районах Азии и Северной Америки, а также на юго-востоке Бразилии и некоторых районах Южной Атлантики и Индийского океанов.

С 1979 г. повышение температуры значительно сильнее над сушей, в то время как похолодание наблюдается в некоторых океанических регионах Тихого океана и Южного полушария; пространственная картина тренда температуры океана в этих регионах, возможно, связана с тихоокеанскими декадными колебаниями и южной кольцевой модой .

Сезонные тенденции температуры положительны на большей части земного шара, но слабое похолодание наблюдается в средних широтах южного океана, но также и в восточной части Канады весной из-за усиления североатлантических колебаний . Потепление сильнее в северной Европе, Китае и Северной Америке зимой, в Европе и Азии весной, в Европе и Северной Африке летом и в северной части Северной Америки, Гренландии и Восточной Азии осенью.

Усиленное потепление над северной Евразией частично связано с северным кольцевым режимом , в то время как в южном полушарии тенденция к усилению западных ветров над Южным океаном способствовала похолоданию на большей части Антарктиды, за исключением Антарктического полуострова, где сильные западные ветры уменьшают вспышки холода с воздуха. юг. Антарктический полуостров нагрелась на 2,5 ° C (4,5 ° F) в течение последних пяти десятилетий на станции Беллинсгаузен.

Спутниковые записи температуры

Сравнение наземных (синий) и спутниковых (красный: Университет Алабамы в Хантсвилле ; зеленый: RSS) записей изменения глобальной температуры поверхности с 1979 по 2009 год. Линейные тренды построены с 1982 года.

Самые последние модели климатических моделей дают ряд результатов для изменений средней глобальной температуры. Некоторые модели показывают большее потепление в тропосфере, чем на поверхности, в то время как несколько меньшее количество симуляций показывает противоположное поведение. Между этими модельными результатами и наблюдениями в глобальном масштабе нет принципиального противоречия.

Спутниковые записи, использованные для отображения гораздо меньших трендов потепления для тропосферы, которые, как считалось, не соответствовали прогнозам модели; однако, после пересмотра спутниковых записей, тенденции стали аналогичными.

В Пятом оценочном отчете МГЭИК завершилась «оценка большого объема исследований, сравнивающих различные долгосрочные радиозонды и продукты MSU, поскольку AR4 затрудняется из-за изменений версий набора данных и присущих им неопределенностей данных. Эти факторы существенно ограничивают возможность делать надежные и последовательные выводы. из таких исследований об истинных долгосрочных тенденциях или ценности различных информационных продуктов «.

Варианты

На среднюю температуру Земли влияет множество моментов: время суток, сезонность, а также место измерения. Не будем забывать, что вращение вокруг оси занимает 24 часа, а значит одна половина проживает в ночи. Так что температура там падает, а на противоположной стороне поднимается.

Также ось вращения планеты наклонена на 23° к солнечному экватору, поэтому северное и южное полушария по очереди приближаются и отодвигаются от источника света. Экваториальные области всегда ближе, поэтому там заметны более высокие температурные нагревы.

Не в каждом регионе наблюдается четкое разделение на 4 времени года. На линии экватора Земли солнечный поток практически стабильный, поэтому средняя годовая температура там меняется крайне редко.

География

§ 23. Из чего состоит атмосфера и как она устроена

Вспомните

Что такое воздух? Из каких газов он состоит?

Что такое атмосфера. Мы живем на поверхности земной коры и одновременно находимся на дне воздушного океана — атмосферы.

Атмосфера — это воздушная оболочка Земли.

Нижняя граница атмосферы — земная поверхность. Близ нее атмосфера плотная, но с высотой она становится все более разреженной. Поэтому атмосфера не имеет четкой верхней границы. Условно ее проводят на высоте 1000 км.

Состав атмосферы и ее роль в жизни Земли. Атмосфера состоит из смеси газов, которую называют воздухом (рис. 80).

Рис. 80. Состав атмосферного воздуха

Для жизни на Земле наиболее важную роль играют кислород, углекислый газ, водяной пар и озон. Запасы кислорода в атмосфере пополняются растениями. Углекислый газ накапливается в ней в результате извержения вулканов, дыхания живых организмов и сжигания топлива. Водяной пар поступает в воздух вследствие испарения воды. (Вспомните из курса «Природоведение», какую роль играют кислород и углекислый газ в жизни растений и животных.)

Рассмотрите рисунок. Какая доля в составе воздуха принадлежит азоту, кислороду, другим газам?

Углекислый газ вместе с водяным паром «берегут» тепло нашей планеты: атмосфера пропускает от Солнца к земной поверхности больше энергии, чем Земля отдает в окружающее космическое пространство.

Озон (от греч. «озо» — пахнущий) образуется из кислорода под действием солнечных лучей и электрических разрядов. Он имеет запах свежести, такой, какой мы ощущаем после грозы. Этого газа в атмосфере очень мало, однако на высоте 20—30 км существует слой воздуха с более высоким содержанием озона. Его называют озоновым экраном. Он, словно щит, оберегает все живое от губительного излучения Солнца.

Атмосфера появилась на Земле очень давно — более 4 млрд лет назад. Она образовалась из вулканических газов. Современные живые организмы не могли бы дышать в древней атмосфере.

Однако значение атмосферы для Земли не ограничивается этим. Оно более многообразно (рис. 81).

Рис. 81. Значение атмосферы

Кроме газов в воздухе атмосферы имеются и твердые примеси. Эти мелкие частицы образуются в результате разрушения горных пород, извержения вулканов, пыльных бурь, сжигания топлива. С одной стороны, они загрязняют воздух, но, с другой стороны, без них невозможно образование облаков.

Строение атмосферы. Атмосфера неоднородна. В ней выделяются слои, отличающиеся плотностью воздуха, температурой, составом газов. Самый нижний слой — тропосфера (рис. 82).

Тропосфера — это нижний слой атмосферы, простирающийся до высоты 8-10 км над полюсами, 10-12 км в средних широтах и 16-18 км над экватором.

В тропосфере находится более 4/5 всего атмосферного воздуха. Причем более половины его сосредоточено до высоты 5 км. Температура воздуха убывает здесь с высотой и достигает у верхней границы -55°С. В тропосфере содержится почти вся атмосферная влага. В ней формируются облака, приносящие дождь, снег, град. Здесь же происходит постоянное движение воздуха, образуется ветер. В тропосфере протекает жизнь человека, растений.

Рис. 82. Строение атмосферы

Над тропосферой простирается стратосфера (см. рис. 82). Стратосфера — это слой атмосферы, лежащий над тропосферой до высоты 55 км. В стратосфере воздух более разреженный, чем в тропосфере. В ней почти не образуется облаков, так как очень мало водяного пара. Температура воздуха здесь растет с высотой и у верхней границы близка к 0°С.

Выше стратосферы выделяется еще несколько атмосферных слоев, которые постепенно переходят в безвоздушное пространство.

Вопросы и задания

  1. По рисунку 81 расскажите о значении атмосферы для жизни на Земле.
  2. Из чего состоит атмосферный воздух? Всегда ли он был таким?
  3. Как называется слой атмосферы, где протекает жизнь человека?
  4. Какие явления происходят в тропосфере?

Ускорение свободного падения на поверхности Земли

Из школьной программы мы знаем, что это ускорение тела при свободном падении (движение в пространстве, где на тело воздействует сила тяжести).

Хотя поверхность Земли имеет упомянутое ускорение как постоянную величину 9,81 м/с2, она действительна для широты 45,50 над уровнем моря. Понятно, что это среднее значение, которое допустимо применять для решения несложных задач. Однако для точных расчётов определённого места следует учитывать время, широту и высоту над уровнем моря. В таком случае можно получить максимально приближенное к реальности значение ускорения свободного падения.

Ускорение свободного падения у поверхности Земли

Стоит отметить, что в результате вращения Земли, её форма похожа на сплюснутый эллипсоид. Точнее геоид, то есть эллипсоид с большим диаметром экватора по сравнению с диаметром полюсов.Также отметим, что при расчётах, которые связаны с вращением Земли, необходимо помнить про центробежное ускорение. Проще говоря, баланс сил всего в совокупности.

Как видно, поверхность Земли неоднозначна и неоднородна, множество факторов влияет на неё. Безусловно, её условия и свойства во многом отличаются от других планет. Именно благодаря этим отличительным качествам мы с вами и живём на нашей голубой родине.

Сравнение температуры Земли с другими планетами

Даже несмотря на все эти факторы, нам повезло обладать наиболее стабильными показателями. Но в нашей системе полно объектов, которые просто поражают своими данными. К примеру, Меркурий умудряется на одной стороне поджариться к 465°C, а на другой замерзнуть на -184°C.

Венере еще хуже. Ее густая и токсичная атмосфера функционирует в качестве одеяла, из-за чего поверхность раскалена на 460°C. Средний марсианский показатель составляет -55°C, но на экваториальной линии может прогреться до 20°C, а на полюсах остыть к -153°C. Не удивительно, что это самая горячая планета в Солнечной системе.

Температурная карта поверхности Земли

Юпитер – представитель газовых гигантов, который фактически лишен поверхности. Но температурные замеры проводят в облачном покрове. Верхние части отмечают -145°C. На Сатурне опускается до -178°C, но планета наклонена, поэтому ее полушария прогреваются по-разному.

Наиболее морозной планетой системы считается Уран, где придется столкнуться с -224°C, а показатель верхнего атмосферного слоя Нептуна достигает -218°C. Вы могли заметить, что в нашем пространстве практически все объекты вынуждены страдать от экстремального нагрева или адской жары.

Атмосфера земли

Атмосфера — это воздушная оболочка Земли, простирающаяся на высоту 550 км. В ее состав входят:

  • тропосфера (до 12 км);
  • стратосфера (12-50 км);
  • мезосфера (50-80 км);
  • термосфера (80-1000 км);
  • экзосфера.


Атмосфера Земли — газовая оболочка, окружающая планету Земля. Credit: wallbox.ru

Свойства разных слоев не похожи между собой. Нижние слои атмосферы являются наиболее плотными, а с набором высоты плотность падает. Тропосфера составляет почти 80% всей массы атмосферы и содержит 99% газообразной воды на Земле. В ее химический состав входят следующие газы:

  • азот (78%);
  • кислород (21%);
  • инертный газ аргон (1%);
  • углекислый газ или диоксид углерода;
  • водяной пар.

Стратосфера — второй слой атмосферы. Здесь располагается озоновый слой, который защищает Землю от избытка ультрафиолета. С увеличением высоты температура слоев сначала падает, а затем начинает повышаться благодаря поглощающим способностям озонового слоя. В нижней части стратосферы летают самолеты.

При переходе в мезосферу падение температуры возобновляется и достигает -80…-100 °C. В этом слое происходит формирование серебристых облаков, состоящих из кристаллов замерзшей воды. Несмотря на то что мезосфера — самый холодный атмосферный слой Земли, здесь сгорают почти все метеориты, падающие на планету.

Экзосфера состоит в основном из водорода и гелия — самых легких газов. Она не имеет четких границ и является переходным слоем между атмосферой и космической пустотой. Здесь частицы способны приобретать скорость, достаточную для того, чтобы покинуть атмосферу Земли и улететь в космическое пространство. Вместе термосфера и экзосфера составляют ионосферу — слой, в котором под воздействием солнечного ветра ионизируются частицы воздуха.

Исторические наблюдения

На отдельных участках земной поверхности фиксируются значения, далекие от среднего показателя. Отрицательный температурный рекорд принадлежит Антарктиде. Он был зафиксирован в 2010 г. и составил -93°С.

Самый резкий перепад между максимальным и минимальным значениями в течение суток зафиксирован в США в 1916 г. Он составил 55°С.

Когда метеорологи сообщают о фиксации нового рекорда или аномально высоких показателях для того или иного сезона, нужно понимать, что речь идет о сравнении с данными, зафиксированными за последние 200 лет. До этого контроль не проводился.

Научные исследования свидетельствуют о том, что за последние 2,4 млрд лет Земля прошла через 5 ледниковых периодов. Завершение последнего мы сейчас наблюдаем. Тенденция к росту температуры наметилась во II в. н.э.

Средние значения и амплитуда температур

Одна из характеристик климата географической точки — среднесуточная температура. Ее можно определить как среднее арифметическое от замеров, сделанных 4 раза за сутки:

  • в час ночи;
  • в семь часов утра;
  • в 13 часов;
  • в 19 часов.

Среднегодовая температура является средним арифметическим от суммы температур всех месяцев года. Соответственно, среднемесячная определяется по сумме ежедневных данных за месяц, разделенной на число дней в месяце.

Температурные колебания в каком-либо регионе характеризуются амплитудой температуры, т. е. разницей между самым высоким и самым низким значением, зафиксированным за определенный промежуток времени. Обычно говорят о суточной, месячной или годичной амплитуде.

Амплитуда колебаний зависит от многих факторов. Прежде всего — это температурные изменения на подстилающей поверхности, чем шире их диапазон, тем больше амплитуда температуры воздуха. Она зависит и от облачности: в ясную погоду колебания сильнее, чем в пасмурную. Сезонные показатели длительного воздействия также отличаются — зимой они меньше, чем летом. С увеличением широты амплитуда температуры воздушных масс идет на убыль, поскольку убывает высота, на которую поднимается солнце к полудню.

Суточная амплитуда неодинакова на разных формах рельефа земной поверхности. На склонах и вершинах холмов и гор она меньше, чем на равнинных территориях. Это объясняется тем, что у выпуклых рельефных форм площадь соприкосновения воздуха и подстилающей поверхности меньше, чем у плоских. Кроме того, на них воздушные массы быстро сменяются на новые.

В оврагах и лощинах форма рельефа вогнутая. Здесь происходит более сильный нагрев воздуха от поверхности и застаивание его в дневные часы. Ночью большие массы холодного воздуха стекают по стенкам вниз. Поэтому в таких местах наблюдается повышенная амплитуда температуры. Но в очень узких ущельях, где приток солнечной радиации небольшой, этот показатель даже меньше, чем в широких долинах.

На материковой широте 20—30° суточная амплитуда, взятая в среднем за год, составляет около двенадцати градусов Цельсия. На широте 60° — примерно 6 °C, а на широте 70° — всего 3 °C.

Суточный ход на суше

Изменения температуры воздуха происходят вместе с изменением температуры подстилающей поверхности с задержкой примерно 15 минут. В течение суток самые низкие показания у термометра наблюдаются в 4−6 часов утра. Так происходит потому, что воздушные массы, нагретые за дневные часы, в ночные постепенно остывают.

Пик процесса понижения приходится как раз на время перед восходом Солнца. С раннего утра солнечные лучи начинают постепенно нагревать воздух, успевший остыть за ночь. Днем солнце достигает зенита, согревая не только воздушные массы, но и поверхность земли. Самое большое значение термометр показывает в 14−16 часов.

К этому времени атмосфера начинает получать тепло и от солнечной энергии, и от нагретой подстилающей поверхности, а температурный показатель достигает своего максимального значения. Потом начинается постепенное остывание и земли, и воздуха. Правильные наблюдения за суточным ходом температуры желательно проводить при ясной погоде.

Особенности теплообмена над водными поверхностями

Суточные амплитуды над поверхностью морей и океанов больше значений на самой поверхности. Их диапазон колебаний небольшой — в пределах десятых долей градуса. В нижних слоях атмосферы над океанами колебания достигают 1−1,5 °C, над внутренними морями — до 5 °C. Это происходит потому, что днем солнечная радиация поглощается водяным паром в самых нижних слоях воздуха, а ночью от них исходит длинноволновое тепловое излучение.

Отличия условий прогревания воды и суши обусловлены тем, что теплоемкость твердой поверхности в два раза меньше, чем у водной. Одинаковое количество тепла нагревает сушу в два раза быстрее воды. При охлаждении наблюдается обратный процесс. Кроме того, тепло над водными поверхностями расходуется на испарение воды и на прогревание водных масс на значительную глубину. При этом происходит перемешивание воды в вертикальном направлении.

Все это причины того, что в океанах накапливается намного больше тепла, чем на материках. Вода удерживает его долгое время и расходует равномерней суши. Можно утверждать, что температура воздуха над океанами повышается и понижается значительно медленней, чем на суше.

Вычисление Температуры Земли

Средний показатель температуры планеты Земля – 14°C. Максимум – 70.7°C. Эту отметку зафиксировали в иранской пустыне. Отличилась также Австралия (69.3°C) и Китай (66.8°C). Самую низкую температуру на Земле отыскали на станции Восток Антарктида, где градус опустился до -89.2°C в 1983 году. В спутниковых наблюдениях отметили целых -93.2° C в Антарктиде в 2010 году!

Вычисления основывались на стандарте Всемирной метеорологической организации. Правила говорят, что показатель нужно определять из прямого солнечного света, а сами термометры размещают на высоте 1.2-2 м от поверхности.

Первая и вторая космические скорости

Законы Кеплера применимы не только к движению планет и других небесных тел в Солнечной системе, но и к движению искусственных спутников Земли и космических кораблей. В этом случае центром тяготения является Земля.

В серии книг Дугласа Адамса «‎Автостопом по Галактике»‎ говорится, что летать — это просто промахиваться мимо Земли. Если ты промахнулся мимо Земли и достиг первой космической скорости 7,9 км/с, то ты стал искусственным спутником нашей планеты.

Искусственный спутник Земли — космический летательный аппарат, который вращается вокруг Земли по геоцентрической орбите. Чтобы у него это получалось, аппарат должен иметь начальную скорость, которая равна или больше первой космической.

Первая космическая скорость

v1 — первая космическая скорость [м/с]

g — ускорение свободного падения на данной планете [м/с2]

R — радиус планеты

На планете Земля g ≈ 10 м/с2.

Есть еще вторая и третья космические скорости. Вторая космическая скорость — это скорость, которая нужна, чтобы корабль стал искусственным спутником Солнца, а третья — чтобы вылетел за пределы солнечной системы.

Вторая космическая скорость

v2 — вторая космическая скорость [м/с]

g — ускорение свободного падения на данной планете [м/с2]

R — радиус планеты

На планете Земля g ≈ 10 м/с2.

Исследования планеты

В исследовании собственного
дома люди, естественно, продвинулись сильнее всего. Все научные направления,
изучающие земную поверхность и космическое пространство вокруг нее, объединены
в термин геонауки.

Геология – наиболее всеобъемлющая отрасль геонауки, изучающая строение, происхождение планеты Земля, состав и структуру ее поверхности, а также все происходящие на ней процессы.  Геология имеет множество ответвлений и смежных направлений, позволяющих досконально изучить прошлое, настоящее и будущее третьей от Солнца планеты. Общее количество наук геологического цикла – 697. Наиболее известными из них являются география, литология, палеонтология, топография, экология, геохимия, океанология, метеорология, климатология.

Изучением Земли, как космического объекта, занимается планетология. Она выясняет, почему Земля является особой планетой Солнечной системы, изучает взаимодействие с другими небесными телами, а также использует ее в качестве аналога для сравнения с другими небесными телами.

Исследование Земли
началось еще в Древнем мире. Античные историки и географы наблюдали, а позднее
описывали в своих трудах происходящие тектонические изменения, изучали минералы
и металлы, пытались объяснить формирование различных форм ландшафта. Влияние
церкви с ее библейскими представлениями о возникновении мира в средние века
немного притормозило все исследования. Окончательное становление геологических
наук произошло лишь к концу 17 века. С этих пор геология и смежные дисциплины
продолжают развиваться, используя в своих исследованиях самые новые технологии
и современные данные других наук.

Факты про Землю

1. Полное обращение вокруг Солнца Земля совершает за 365 дней 6 часов 9 минут и 10 секунд.

2. Земля является самой плотной планетой в Солнечной Системе.

3. Хоть у северного полюса нет суши, он покрывается льдом.

4. Согласно геологическим исследованиям, жизнь на Земле зародилась 3.5 миллиарда лет назад, а 99% всех живших на ней организмов давно вымерли.

5. Земля находится в «Зоне Златовласки» – вода на планетах в таких зонах способна находиться в жидком виде.

Getty Images

6. На протяжении более 2000 лет, люди верили, что Земля является центром Вселенной, но уже в 1543 году Николай Коперник огласил гелиоцентрическую теорию, которая утверждала, что в центре Солнечной системы находится Солнце, а не Земля.

7. Земля – это единственная планета Солнечной Системы, не названная в честь мифологических Богов.

8. Внутреннее ядро Земли состоит из твердых и очень горячих железа и никеля. Диаметр ядра составляет 2,440 километра, что сопоставимо с Австралией, чья ширина составляет 2,500 километра.

9. Температура внутреннего ядра составляет 5427 градуса по Цельсию, что выше температуры плавления алмаза почти на 1,500 градусов.

10. Самой высокой точкой на Земле является вершина горы Эверест – 8,8 километра над уровнем моря, а самой низкой является Бездна Челленджера в Марианской впадине глубиной 11,022 метра.

11. 97% вулканов на Земле находится в океанах, а срединно-океанические хребты достигают длин более 60,000 километров.

12. Парниковый эффект, когда тепло не может покинуть атмосферу из-за скопившихся газов, позволяет поддерживать стабильную температуру на Земле. Без него, средняя температура поверхности Земли была бы не 15 градусов, а -18 градусов.

13. Земля – это единственная планета Солнечной Системы с тектоническими плитами. Они «плавают» на поверхности мантии и периодически сталкиваются друг с другом.

14. За счёт вращающегося ядра, Земля является гигантским магнитом, со своими магнитными полюсами, и образующая собственное магнитное поле, которое защищает нас от радиоактивного излучения из космоса.

15. У Земли есть один естественный спутник – это Луна. Искусственных спутников у Земли около 20,000, но менее 3,000 из них в данный момент работают.

16. Атмосфера Земли разделена на 5 слоёв: тропосферу, стратосферу, мезосферу, термосферу и экзосферу и простирается на 10,000 километров в космос, но 98% всей массы атмосферы находится в пределах высоты 50 километров.

17. На Луне побывало 12 человек, а высадки людей на Луну проводились с Июля 1969 года по Декабрь 1972.

18. Из всей Солнечной Системы, только на Земле вода представлена в трёх агрегатных состояниях – твёрдом, жидком и газообразном.

19. На приливы и отливы влияет в большей степени Луна, но Солнце тоже участвует в этом процессе.

Getty Images

20. Свет с Солнца достигает Земли за 8 минут и 20 секунд, поэтому мы можем только видеть Солнце, каким оно было 8.3 минуты назад.

21. С Земли невооружённым взглядом можно увидеть более 9,000 звёзд.

22. На Земле произрастает более 3 триллионов деревьев. На одного человека приходится около 425 деревьев.

23. Среднее расстояние от Земли до Солнца составляет 149,598,023 километра. При самом дальнем расположении, называемом афелием, расстояние составляет 152,000,000 километра, а при самом близком, называемым перигелием, расстояние составляет 147,095,000 километра.

24. Луна образовалась в результате столкновения Земли с другой планетой, по размеру похожей на Марс. Сразу после образования Луны, она была настолько близко, что по расчётам, приливы могли подниматься более чем на 100 метров.

Getty Images Pro

25. 180 миллионов лет назад на Земле был единственный континент, под названием Пангея.

Виды термометров по используемым материалам

  1. Жидкостные. Представляют собой корпус, заполненный жидкостью, которая подвержена температурному расширению. Колба с жидкостью прикладывается к шкале. При нагреве жидкость расширяется, и столбик растет, а при охлаждении — наоборот, сжимается (уменьшается). Погрешность измерений такими приборами составляет менее 0,1 градуса.

  2. Газовые. Принцип действия — тот же, что и у жидкостных, но в качестве заполнителя для колбы выбирается инертный газ. Это позволяет существенно увеличить температурный диапазон измерения (если для жидкостных предел — +600 градусов, то для газовых — +1000 градусов). С их помощью можно измерять температуру в различных раскаленных жидких средах.
  3. Механические. В основе действия — принцип деформации металлической спирали. Часто эти термометры комплектуются стрелочным “дисплеем”. Устанавливаются в спецтехнике, автомобилях, на автоматизированных линиях. Нечувствительны к ударам.
  4. Электрические. Работают, измеряя уровень сопротивления проводника при разных температурных показателях. В качестве проводника могут использоваться разные металлы (например, медь или платина). Соответственно, и диапазон измерений таких устройств будет отличаться. Чаще всего такие модели применяются в лабораторных условиях.
  5. Термоэлектрические. В конструкции предусмотрено два проводника, проводящие замеры по физическому принципу на основе эффекта Зеебека. Эти устройства очень точные, работают с погрешностью до 0,01 градуса и подходят для высокоточных измерений в производственных процессах, когда рабочая температура превышает 1000 градусов.
  6. Волоконно-оптические. Чувствительные датчики из оптоволокна (оно натягивается и сжимается или растягивается при изменении температуры, а прибор фиксирует степень преломления проходящего луча света). Допустимый диапазон измерений — до +400 градусов, а погрешность — не более 0,1 градуса.
  7. Инфракрасные. Непосредственный контакт с измеряемым веществом не требуется: прибор генерирует инфракрасный луч, который направляется на изучаемую поверхность. Это современный вид бесконтактных термометров, которые работают с точностью до нескольких градусов и подходят для высокотемпературных измерений. С их помощью можно измерять даже температуру открытого пламени.

предлагает как разные виды термометров, так и комбинированные устройства, в том числе манометры-термометры или гигрометры-термометры для автономной работы с энергонезависимой памятью, обеспечивающей постоянную фиксацию результатов измерений.

Источники

  • https://nauka.club/estestvoznanie/temperatura-vozdukha.html
  • https://RkzSp.ru/otoplenie-montazh/kak-izmerit-temperaturu-vozduha.html
  • https://geografiyazemli.ru/atmosfera/temperatura-vozducha.html

Дети Пангеи

Приблизительно 170 — 200 миллионов лет назад Пангея по не до конца ясным причинам раскололась на две части, которые, в свою очередь, раздробились на несколько тектонических плит. Материки и океаны рождались в геологических муках, перекраивалась площадь всей Земля. Свидетельствами и красноречивыми следами этих грандиозных процессов служат островные дуги, вздыбленные горные хребты, океанические впадины. Материки продолжают сближаться, но скорость их движения мизерная по сравнению с размерами — всего несколько сантиметров в год. По примерным подсчетам, они вновь сойдутся в суперконтинент через 250 миллионов лет.

Но наличие атмосферы, водной оболочки, достаточного количества света и умеренных температур прежде всего обусловлено расположением Земли относительно Солнца. Ведь жизнь возможна лишь на одной из восьми планет Солнечной системы. В зависимости от строения все планеты делятся на две группы и распределяются следующим образом по расстоянию до Солнца.

Планеты земной группы:

  • Меркурий — 58 миллионов километров до Солнца. Самая маленькая планета системы имеет очень разряженную атмосферу, из-за чего наблюдаются невероятные температурные колебания на поверхности, которые варьируются от +430 °С до -190 °С.
  • Венера — 108 миллионов километров. По плотности атмосфера этой планеты превосходит земную в девяносто раз. Венера представляет собой настоящий парник, температура ее поверхности нагревается до 460 °С, поэтому вода не может оставаться в жидком состоянии, следовательно, невозможна жизнь.
  • Земля — 149.5 миллиона километров. Идеальные условия для жизни. Масса и площадь поверхности планеты Земля больше, чем каждой из планет земной группы.
  • Марс — 228 миллионов километров. Углекислая атмосфера Марса в 500 — 800 раз менее плотная, нежели атмосфера Земли. Марсианская поверхность не способна поддерживать нужный для жизни температурный режим. Марс — очень холодная планета, ночами на ее поверхности воцаряется мороз до -100 °С.

Планеты из группы газовых гигантов:

  • Юпитер — 778 миллионов километров. Самая большая планета Солнечной системы. Ее масса в два с половиной раза больше суммарной массы остальных семи планет, а площадь почти в 122 раза больше площади планеты Земля. Юпитер преимущественно состоит из гелия и водорода.
  • Сатурн — 1.43 миллиарда километров. Плотность этой планеты, которая известна своими удивительными кольцами, меньше, чем плотность воды.
  • Уран — 2.88 миллиарда километров. системы, температура на поверхности Урана опускается до -224 °С.
  • Нептун — 4.5 миллиарда километров. Самая дальняя от Солнца планета имеет атмосферу, состоящую в основном из водорода и гелия с примесями метана. Нептун, как и Уран, очень холоден, температура на нем опускается ниже 200 °С.

Анализируя эту информацию, можно в очередной раз изумиться стечению обстоятельств, сделавших возможной жизнь на Земле. Долгое время ученые и фантасты допускали инопланетную жизнь на Венере и Марсе, но исследования последних десятилетий показали, что это маловероятно. На соседках Голубой планеты слишком суровый климат, неподходящая плотность атмосферы. Там не существует океана, который породил биосферу на Земле, и нет достаточного мощного магнитного поля для защиты живых существ от смертельного излучения Солнца.