Строение солнечной системы

Содержание

Доклад на тему планеты солнечной системы

Наша Солнечная система включает в себя планеты, их спутники, кометы, астероиды, пыль, газ, мелкие частицы, а так же, Солнце. Так как, Солнце обладает гравитацией, оно удерживает все объекты вокруг себя. Всего известно 8 планет Если посмотреть, на какой удаленности от Солнца они находятся, можно их выстроить в такой ряд – Меркурий – Венера – Земля – Марс – Юпитер – Сатурн – Уран – Нептун. Раньше ученые считали планетой Плутон, но по мере развития науки, планетам дали характеристики, которым Плутон не соответствует и в 2006 году его исключили из списка планет.

Все планеты делятся на две группы. К первой (земной) относятся – Венера, Меркурий, Марс и Земля. Их характеризуют небольшие размеры, твердая поверхность и отсутствие или малое количество спутников. Из этих планет, самой большой является наша Земля.

Ко второй группе относятся планеты – Нептун, Уран, Сатурн, Юпитер, объединенные одним названием – гиганты. Их строение отличается от других планет – у них отсутствует твердая поверхность, в химическом составе присутствует газ. Кроме этого, у всех гигантов есть спутники, среди которых, очень большие.

Планеты из земной группы:

  • Меркурий – среди других планет, эта самая маленькая и находится ближе всех к Солнцу, оборот вокруг которого составляет 88 дн. Вес Меркурия гораздо меньше веса Земли – в 20 раз. Атмосфера на планете отсутствует, ночью свирепствует сильный холод, а днем очень жарко. Поверхность Меркурия испещрена кратерами, несколько из которых, достигают не один километр в ширину.
  • Венеру закрывают густые облака ядовитого газа, которые простираются на 100 км вверх. Это вторая планета (после Меркурия) от Солнца. На Венере очень жарко (более 500 градусов). Спутники у нее отсутствуют. После Луны и Солнца, Венера является самой ярким космическим объектом в нашей Солнечной системе. Она настолько медленно вращается, что ее сутки составляют 243 дня, а год – 225, если сравнивать с Землей.
  • Марс – расположен после Земли, по счету – это четвертая планета от Солнца. У Марса есть спутники, их всего два – Деймос и Фобос. Знаменита планета своим красным цветом, так как в ее почве большое количество окиси железа. Сутки длятся 24 часа, а вот год – 668 дней, что вдвое больше, чем у Земли. Это единственная планета, которая более всех похожа на Землю, здесь, так же, происходит смена времен года, присутствует тонкий слой атмосферы и, возможно, есть вода (но, это предположение).

Гиганты:

  • Юпитер считается самым крупным космическим объектом, имеет кольца (всего их 5), состоящие из космической пыли. Отмечено, что планета имеет более 60-ти спутников. Юпитер тяжелее Земли, приблизительно в 300 раз и имеет 11 земных радиусов. Если говорить обо всех планетах, то следует сказать, что они, все вместе взятые, в 2,5 раза легче, чем гигант Юпитер. Не смотря на свои огромные размеры, оборот вокруг оси Юпитер совершает за 10 часов, а вокруг Солнца оборачивается за 12 лет (земных).
  • Сатурн виден с Земли невооруженным глазом, а кольца (состоят из льда и пыли) можно разглядеть в телескоп. Количество спутников – более 60-ти, один из которых, даже, больше Меркурия. Сатурн сжат у полюсов и расширен у экватора, по этой причине его вращение происходит очень быстро. В сутках планеты всего 10 земных часов, а год длится – 30 лет.
  • Уран характерен тем, что его ось отклонена на 98 гр., в отличие от других планет. Из-за этого, освещение Южного и Северного полюсов происходит попеременно, длительностью, 42 года. Есть предположение, что планета столкнулась с неизвестным космическим объектом, поэтому она так движется. В составе Урана смесь газов, переходящая в жидкость, которая зафиксирована на протяжении 8-ми тысяч километров. Наиболее низкая температура здесь была на уровне 224 гр. Спутников на Уране – 27, колец – 13.
  • Нептун самая крайняя планета в Солнечной системе, находящаяся на самом большом расстоянии от Солнца. Интересно, что планета, была открыта путем математических вычислений и в телескоп она не была видна. Нептун, довольно массивная и плотная планета, солнечного света получает в 400 раз меньше, чем Земля. Здесь всегда страшный холод и царят сумерки. Один оборот вокруг Солнца длится 164 года, следует сказать, что с тех пор, когда планета была открыта (в 1846 г.), она облетела Солнце только один раз. Длительность суток – 16 часов.

50 интересных фактов о солнечной системе

  1. Юпитер считается самой большой планетой Солнечной системы.
  2. В Солнечной системе имеется 5 планет-карликов, одну из которых переквалифицировали в Плутон.
  3. Очень мало в Солнечной системе астероидов.
  4. Венера является самой горячей планетой Солнечной системы.
  5. Около 99% места(по объему) занимает Солнце в Солнечной системе.
  6. Одним из самый красивых и оригинальных мест Солнечной системы считается спутник Сатурна. Там можно заметить огромную концентрацию этана и жидкого метана.
  7. У нашей Солнечной системы есть хвост, напоминающий четырехлистный клевер.
  8. Солнце следует непрерывному 11-летнему циклу.
  9. В Солнечной системе насчитывается 8 планет.
  10. Полностью сформирована Солнечная система благодаря большому газопылевому облаку.
  11. Ко всем планетам Солнечной системы долетали космические аппараты.
  12. Венера является единственной планетой Солнечной системы, которая вращается против часовой стрелки вокруг своей оси.
  13. У Урана насчитывается 27 спутников.
  14. Самая большая гора — на Марсе.
  15. Огромная масса объектов Солнечной системы пришлась на Солнце.
  16. Солнечная система находится в составе галактики Млечный путь.
  17. Солнце – центральный объект солнечной системы.
  18. Часто Солнечную систему разделяют на регионы.
  19. Солнце является ключевым компонентом Солнечной системы.
  20. Примерно 4,5 миллиарда лет была образована Солнечная система.
  21. Самой далекой планетой Солнечной системы является Плутон.
  22. Две области в Солнечной системе заполнены малыми телами.
  23. Солнечная система построена вопреки всем законам Вселенной.
  24. Если сравнивать Солнечную систему и космос, то она в нем просто песчинка.
  25. За последние несколько столетий Солнечная система утратила 2 планеты: Вулкан и Плутон.
  26. Исследователи уверяют, что Солнечную систему создавали искусственным путем.
  27. Единственным спутником Солнечной системы, у которого плотная атмосфера и поверхность которого не удастся увидеть из-за облачного покрова – Титан.
  28. Область Солнечной системы, которая находится за орбитой Нептуна называется поясом Койпера.
  29. Облаком Оорта называется область Солнечной системы, которая служит источником кометы и длинного периода обращения.
  30. Каждый объект Солнечной системы держится там из-за силы притяжения.
  31. Ведущая теория Солнечной системы предполагает появление планет и спутников из огромного облака.
  32. Солнечная система считается самой тайной частицей Вселенной.
  33. В Солнечной системе есть огромный пояс астероидов.
  34. На Марсе можно видеть извержение самого большого вулкана Солнечной системы, который назван Олимп.
  35. Окраиной Солнечной системы считается Плутон.
  36. На Юпитере есть большой океан жидкой воды.
  37. Луна – крупнейший спутник Солнечной системы.
  38. Самым большим астероидом Солнечной систмы считается Паллада.
  39. Самая яркая планета Солнечной системы – Венера.
  40. В основном Солнечная система состоит из водорода.
  41. Земля является равноправным членом Солнечной системы.
  42. Солнце нагревается медленно.
  43. Как ни странно самые огромные запасы воды в Солнечной системе есть в солнце.
  44. Плоскость экватора каждой планеты Солнечной системы расходится с плоскостью орбиты.
  45. Спутник Марса с названием Фобос является аномалией Солнечной системы.
  46. Солненчая система может поражать собственным многообразием и масштабом.
  47. Планеты Солнечной системы подвергаются влиянию Солнца.
  48. Пристанищем спутников и газовых гигантов считается внешняя оболочка Солнечной системы.
  49. Огромное количество планетарных спутников Солнечной системы мертвы.
  50. Крупнейшим астероидом, диаметр которого 950 км, называется Церера.

Источники

  • http://www.7gy.ru/shkola/okruzhajuschii-mir/930-pro-planety-solnechnoj-sistemy-dlya-detej.htmlhttp://100-faktov.ru/50-interesnyx-faktov-pro-solnechnuyu-sistemu/

Открытие и исследование

Первые представления о Солнечной системе появились в глубокой древности. Разные цивилизации (египтяне, шумеры, китайцы, майя и т.д.) наблюдали за небом и знали о существовании первых шести планет солнечной системы. Естественно, люди, наблюдая за Солнцем с Земли, видели, что оно вращается вокруг нашей планеты, а не наоборот. Поэтому первоначально человечество придерживалось геоцентрической картины мира, в которой Земля находилась в центре Солнечной системы. При этом траектории движения планет были очень сложными, некоторые из них могли повернуть свое движение вспять.

Лишь в XVI веке Николай Коперник объяснил эти аномалии тем, что планеты, в том числе и Земля, вращаются вокруг Солнца, а Земля также вращается вокруг своей оси. Его теория именуется гелиоцентрической картиной мира. Параллельно с этим стали развиваться средства наблюдения за космосом. Первый телескоп был создан в 1607 г. В 1610 г. Галилей совершил первое значительное открытие небесных тел. Ему удалось обнаружить 4 крупнейших спутника Юпитера и тем самым подтвердить правоту Коперника. В 1655 г. у Сатурна был обнаружен спутник Титан, а к 1686 г. Джованни Кассини открыл ещё 4 спутника этой планеты.

Следующее важное открытие произошло в 1781 г., когда Уильям Гершель обнаружил седьмую планету – Уран. В 1801 г

был найден первый астероид – Церера.

Расчеты показывали, что Уран движется по орбите не так, как того требует ньютоновская механика. Было сделано предположение, что за ним находится ещё одна планета, названная в будущем Нептуном. В 1846 г. она сначала была найдена теоретически, а только потом ее визуально наблюдал Иоганн Галле.

В 1930 г. был обнаружен Плутон. Сначала он был назван десятой планетой, однако со временем стало ясно, что он не одинок на своей орбите. В 1992 году было доказано существование пояса Койпера, которому и принадлежит Плутон, а в начале 2000-х в нем был найден ряд небесных тел, которые вместе с Плутоном в 2006 г. были признаны карликовыми планетами.

Развитие космонавтики сыграло огромную роль в исследовании Солнечной системы. В 1959 г. советский космический аппарат «Луна-1» впервые в истории преодолел гравитационное поле Земли и обследовал Луну. В дальнейшем аппараты были отправлены ко всем планетам Солнечной системы, а также к ряду спутников, астероидов, комет. «Вояджер-1», запущенный в 1977 г, уже исследует район гелиопаузы.

Единственным объектом Солнечной системы, на который высаживался человек, является Луна. Всего в 1969-1972 г. было осуществлено 6 высадок на спутник Земли.

Недостатки небулярной гипотезы

Несмотря на то, что небулярная модель имеет широкое признание, она по-прежнему содержит ряд вопросов, которые не могут решить даже современные астрономы. Например, есть вопрос, связанный с наклоном. Согласно небулярной теории, все планеты, находящиеся вокруг звезд, должны обладать одинаковым наклоном осей по отношению к плоскости эклиптики. Но нам известно, что планеты внутреннего и внешнего кругов обладают совершенно разными наклонами осей.

В то время как планеты внутреннего круга обладают углом наклона осей, составляющим от 0 градусов, оси других (Земли и Марса, например) имеют угол наклона около 23,4 и 25 градусов соответственно. Планеты внешнего круга, в свою очередь, тоже обладают разными наклонами осей. Наклон оси Юпитера, например, составляет 3,13 градуса, в то время как у Сатурна и Нептуна эти показатели составляют 26,73 и 28,32 градуса соответственно. А Уран вообще имеет экстремальный наклон оси в 97,77 градуса, что фактически заставляет один из его полюсов постоянно находиться лицом к Солнцу.

Список потенциально обитаемых экзопланет согласно Planetary Habitability Laboratory

Кроме того, изучение планет вне Солнечной системы позволило ученым отметить несоответствия, которые ставят под сомнение небулярную гипотезу. Некоторые из этих несоответствий связаны с классом планет «горячие Юпитеры», чьи орбиты близко расположены к своим звездам, и периодом в несколько дней. Астрономы скорректировали некоторые моменты гипотезы, чтобы решить эти вопросы, но всех проблем это не решило.

Вероятнее всего, неразрешенные вопросы имеют наиболее близкое значение к пониманию природы формирования, и поэтому на них так трудно ответить. Просто когда мы думаем, что нашли наиболее убедительное и логичное объяснение, всегда остаются моменты, которые объяснить мы не в состоянии. Тем не менее мы прошли немалый путь, пока не пришли к нашим текущим моделям звездообразования и планетарного формирования. Чем больше мы узнаем о соседних звездных системах и чем больше исследуем космос, тем более зрелыми и совершенными становятся наши модели.

Самые большие космические тела

Самая большая планета

Самая большая планета во Вселенной – это TrES-4. Ее обнаружили в 2006 году, и располагается она в созвездии Геркулес. Планета под названием TrES-4 вращается вокруг звезды, которая находится на расстоянии около 1400 световых лет от планеты Земля.

Сама планета TrES-4 – шар, который состоит преимущественно из водорода. Ее размеры в 20 раз превосходят размеры Земли. Исследователи утверждают, что диаметр обнаруженной планеты практически в 2 раза (точнее в 1,7) больше диаметра Юпитера (это самая большая планета Солнечной системы). Температура TrES-4 около 1260 градусов по Цельсию.

Самая огромная звезда

На сегодняшний день самой большой звездой является UY Щита в созвездии Щита на расстоянии около 9500 световых лет от нас. Это одна из самых ярких звезд — она ярче нашего Солнца в 340 тысяч раз. Ее диаметр 2,4 млрд. км., что в 1700 раз больше нашего светила, при весе всего лишь в 30 раз превышающем массу солнца. Жаль что она постоянно теряем массу, ее еще называют самой быстро сгораемой звездой.

Возможно, поэтому некоторые ученые считают самой большой звездой NML Лебедя, а третьи — VY Большого пса.

Самая большая черная дыра

Черные дыры не измеряются в километрах, ключевым показателем является их масса. Самая гигантская черная дыра находится в галактике NGC 1277, которая не является самой крупной. Тем не менее дыра в галактике NGC 1277 имеет 17 млрд солнечных масс, что составляет 17% общей массы галактики. Для сравнения черная дыра нашего Млечного пути имеет массу 0,1% от общей массы галактики.

Крупнейшая галактика

Мега-монстром среди известных в наше время галактик является IC1101. Расстояние до Земли около 1 млрд. световых лет. Ее диаметр около 6 млн световых лет и вмещает около 100 трлн. звезд, для сравнения диаметр Млечного пути 100 тыс. световых лет. По сравнению с Млечным путем IC 1101 более чем в 50 раз крупнее и в 2000 раз массивнее.

Самая большая клякса Лайман-альфа (Lyman-α blob — LAB)

Кляксы (капли, облака) Лайман-альфа представляют собой аморфные тела напоминающие по форме амеб или медуз, состоящие из огромной концентрации водорода. Эти кляксы являются начальной и очень короткой стадией зарождения новой галактики. Самая громадная из них LAB-1 имеет ширину более 200 млн. световых лет и находится в созвездии Водолея.

На фото слева LAB-1 зафиксирована приборами, справа — предположение, как она может выглядеть вблизи.

Радиогалактики

Радиогалактика — тип галактик, которые обладают намного большим радиоизлучением по сравнению с остальными галактиками.

Крупнейшая пустота

Галактики, как правило, расположены в кластерах (скоплениях), которые имеют гравитационную связь и расширяются вместе с пространством и временем.

Что же находится в тех местах, где нет расположения галактик? Ничего! Области Вселенной, в которой есть только «ничто» и является пустотой. Самая огромная из них — пустота Волопаса.

Она расположена в непосредственной близости от созвездия Волопаса и имеет диаметр около 250 млн. световых лет. Расстояние до Земли приблизительно 1 млрд. световых лет

Гигантский кластер

Крупнейшим сверхскоплением галактик является Шепли суперкластер. Шепли расположен в созвездии Центавра и выглядит как яркое уплотнение в распределении галактик. Это самый большой массив объектов, связанных между собой гравитацией. Его длина 650 млн. световых лет.

Самая большая группа квазаров

Самой большой группой квазаров (квазар — яркая, энергичная галактика) является Огромный-LQG, также называемый U1.27. Эта структура состоит из 73 квазаров и имеет диаметр 4 млрд. световых лет.

Однако на первенство также претендует Великая GRB стена, которая имеет диаметр 10 млрд. световых лет, — количество квазаров неизвестно.

Наличие таких больших групп квазаров во Вселенной противоречит Космологическому принципу Эйнштейна, поэтому их исследования для ученых вдвойне интереснее.

Космическая Паутина

Если на счет других объектов Вселенной у астрономов возникают споры, то в этом случае почти все из них единодушны во мнении, что самым большим предметом во Вселенной является Космическая Паутина.

Бесконечные скопления галактик, окруженные черной материей формируют «узлы» и при помощи газов — «нити», что внешне очень напоминают трехмерную паутину.

Ученые считают, что космическая паутина опутывает всю Вселенную и соединяет между собой все объекты в космосе.

Что такое внутренняя Солнечная система

Во внутренней Солнечной системе мы находим «внутренние планеты» — Меркурий, Венеру, Землю и Марс — которые названы так потому, что вращаются ближе к Солнцу. В дополнение к своей близости, эти планеты имеют ряд ключевых отличий от других планет в Солнечной системе.

Для начала: внутренние планеты твердые и землистые, состоят в основном из силикатов и металлов, тогда как внешние планеты — газовые гиганты. Внутренние планеты расположены ближе друг к другу, чем их внешние коллеги. Радиус всей это области меньше дистанции между орбитами Юпитера и Сатурна.

Как правило, внутренние планеты меньше и плотнее своих коллег и обладают небольшим числом лун. Внешние планеты имеют десятки спутников и кольца из льда и камня.

Внутренние планеты земной группы состоят по большей части из огнеупорных минералов вроде силикатов, которые образуют их кору и мантию, и металлов — железа и никеля — которые лежат в ядре. Три из четырех внутренних планет (Венера, Земля и Марс) имеют достаточно существенные атмосферы, чтобы формировать погоду. Все усеяны ударными кратерами и обладают поверхностной тектоникой, рифтовыми долинами и вулканами.

Из внутренних планет Меркурий является ближайшей к нашему Солнцу и наименьшей из планет земной группы. Его магнитное поле составляет лишь 1% от земного, и очень тонкая атмосфера диктует температуру в 430 градусов по Цельсию днем и -187 ночью, поскольку атмосфера не может удержать тепло. Он не имеет спутников и состоит по большей части из железа и никеля. Меркурий — одна из самых плотных планет Солнечной системы.

Венера, которая по размерам примерно с Землю, имеет плотную токсичную атмосферу, которая удерживает тепло и делает планету самой горячей в Солнечной системе. Ее атмосфера состоит на 96% из углекислого газа, а также азота и нескольких других газов. Плотные облака в пределах атмосферы Венеры состоят из серной кислоты и других агрессивных соединений, с малым добавлением воды. Большая часть поверхности Венеры отмечена вулканами и глубокими каньонами — самый большой свыше 6400 километров длиной.

Земля является третьей внутренней планетой и лучше всех изученной. Из четырех планет земной группы Земля самая крупная и единственная обладает жидкой водой, необходимой для жизни. Атмосфера Земли защищает планету от опасного излучения и помогает удержать ценный солнечный свет и тепло под оболочкой, что также необходимо для существования жизни.

Как и другие планеты земной группы, Земля имеет каменистую поверхность с горами и каньонами и тяжелое металлическое ядро. Атмосфера Земли содержит водяной пар, который помогает смягчить суточные температуры. Как и Меркурий, Земля обладает внутренним магнитным полем. А наша Луна, единственный спутник, состоит из смеси различных пород и минералов.

Восход на Марсе прекрасен.

Марс — четвертая и последняя внутренняя планета, известная также как «Красная планета», благодаря окисленным богатым железом материалам, лежащим на поверхности планеты. Марс также обладает набором интереснейших свойств поверхности. На планете расположилась крупнейшая в Солнечной системе гора (Олимп) высотой в 21 229 метров над поверхностью и гигантский каньон Valles Marineris в 4000 км длиной и глубиной до 7 км.

Большая часть поверхности Марса очень стара и заполнена кратерами, но есть и геологически новые зоны. На марсианских полюсах расположены полярные шапки, которые уменьшаются в размерах во время марсианских весны и лета. Марс менее плотный, чем Земля, и располагает слабым магнитным полем, что говорит скорее о твердом ядре, нежели о жидком.

Тонкая атмосфера Марса привела некоторых астрономов к мысли о том, что на поверхности планеты существовала жидкая вода, только испарилась в космос. Планета имеет две небольшие луны — Фобос и Деймос.

Землю поглотит Солнце — когда и как это случится

Сейчас Солнце, можно сказать, находится в самом расцвете сил, то есть на середине своего жизненного пути. Это значит, что существовать ему осталось еще примерно 10 миллиардов лет. Но, как недавно писала моя коллега, когда на Солнце закончится водород, оно начнет сжигать гелий. В этот момент светило будет превращаться в красного гиганта, то есть внешние орбиты расширятся вплоть до Марса. Соответственно, Земля неминуема будет поглощена Солнцем. Да, все произойдет как по заветам Тараса Бульбы.

Через 5 миллиардов лет Солнце поглотит Землю

Причем жизнь на Земле перестанет существовать гораздо раньше, чем случится уничтожение планеты. Дело в том, что, ежесекундно на Солнце 600 миллионов тонн водорода в результате термоядерных реакций превращается в гелий. Это приводит к тому, что звезда начинает светить ярче, из нее больше выходит энергии в космос.

Конечно, пока для нас это не заметно, однако уже спустя миллиард лет звезда будет светить на 10% ярче, что приведет к возникновению на Земле сильного парникового эффекта, такого как сейчас на Венере. А спустя 3,5 миллиардов лет яркость Солнца увеличится на 40%, в результате чего на нашей планете перестанет существовать вода в жидком виде.

Сравнение размеров Земли, Луны и Плутона

Глобальные радиусы[ редактировать ]

Землю можно смоделировать как сферу во многих отношениях. В этом разделе описаны распространенные способы. Для различных радиусов, полученных здесь, используются обозначения и размеры, указанные выше для Земли, полученные из эллипсоида WGS-84 ; а именно,

Экваториальный радиусa = (+6 +378 0,1370 км )
Полярный радиусb = (6 356 .7523 км )

Сфера является грубым приближением сфероида, который, в свою очередь, является приближением геоида, единицы измерения здесь указаны в километрах, а не в миллиметрах, подходящих для геодезии.

Номинальный радиус

В астрономии Международный астрономический союз обозначает номинальный экваториальный радиус Земли как 6 378,1 км (3 963,2 мили). 3 номинальный полярный радиус Земли определяется как = 6,356.8 км (3,949.9 мили). Эти значения соответствуют условию нулевого земного прилива . Экваториальный радиус обычно используется в качестве номинального значения, если полярный радиус явно не требуется. 4
Номинальный радиус служит
единицей длины в астрономии . (Обозначения определены так, что их можно легко обобщить для других
ReEN{\displaystyle {\mathcal {R}}_{\mathrm {eE} }^{\mathrm {N} }}RpEN{\displaystyle {\mathcal {R}}_{\mathrm {pE} }^{\mathrm {N} }}; например, для номинального полярного радиуса Юпитера .)RpJN{\displaystyle {\mathcal {R}}_{\mathrm {pJ} }^{\mathrm {N} }}

Средний радиус

Экваториальный ( a ), полярный ( b ) и средний радиусы Земли, как определено в редакции Мировой геодезической системы 1984 г. (без учета масштаба)

В геофизике Международный союз геодезии и геофизики (IUGG) определяет средний радиус Земли (обозначенный R 1 ) как

R1=2a+b3{\displaystyle R_{1}={\frac {2a+b}{3}}\,\!}

Множитель два объясняет двухосную симметрию сфероида Земли, специализацию трехосного эллипсоида. Для Земли средний радиус составляет 6371,0088 км (3958,7613 миль).

Ауталический радиус

Аутальный радиус Земли (что означает «равная площадь» ) — это радиус гипотетической идеальной сферы, имеющей такую ​​же площадь поверхности, как и опорный эллипсоид . МГГС обозначает authalic радиус , как R 2 .
Для сфероида существует решение в замкнутой форме:

R2=a2+b2eln⁡(1+eba)2=a22+b22tanh−1⁡ee=A4π,{\displaystyle R_{2}={\sqrt {\frac {a^{2}+{\frac {b^{2}}{e}}\ln {\left({\frac {1+e}{b/a}}\right)}}{2}}}={\sqrt {{\frac {a^{2}}{2}}+{\frac {b^{2}}{2}}{\frac {\tanh ^{-1}e}{e}}}}={\sqrt {\frac {A}{4\pi }}}\,,}

где e 2 =а 2б 2а 2и представляет собой площадь поверхности сфероида.

Для Земли автоматический радиус составляет 6371,0072 км (3958,7603 миль).

Объемный радиус

Другая сферическая модель определяется объемным радиусом Земли , который представляет собой радиус сферы, объем которой равен эллипсоиду. МГГС обозначает объемный радиус , как R 3 .

R3=a2b3.{\displaystyle R_{3}={\sqrt{a^{2}b}}\,.}

Для Земли объемный радиус равен 6,371,0008 км (3,958,7564 мили).

Радиус выпрямления

Другой глобальный радиус — это радиус выпрямления Земли , дающий сферу с окружностью, равной периметру эллипса, описываемому любым полярным поперечным сечением эллипсоида. Для этого требуется с учетом полярного и экваториального радиусов:

Mr=2π∫π2a2cos2⁡φ+b2sin2⁡φdφ.{\displaystyle M_{\mathrm {r} }={\frac {2}{\pi }}\int _{0}^{\frac {\pi }{2}}{\sqrt {{a^{2}}\cos ^{2}\varphi +{b^{2}}\sin ^{2}\varphi }}\,d\varphi \,.}

Радиус выпрямления эквивалентен среднему меридиональному значению, которое определяется как среднее значение M

Mr=2π∫π2M(φ)dφ.{\displaystyle M_{\mathrm {r} }={\frac {2}{\pi }}\int _{0}^{\frac {\pi }{2}}\!M(\varphi )\,d\varphi \,.}

Для пределов интегрирования [0,π2], интегралы для радиуса выпрямления и среднего радиуса дают один и тот же результат, который для Земли составляет 6 367,4491 км (3 956,5494 миль).

Среднее меридиональное значение хорошо аппроксимируется полукубическим средним двух осей, цитата необходима

Mr≈(a32+b322)23,{\displaystyle M_{\mathrm {r} }\approx \left({\frac {a^{\frac {3}{2}}+b^{\frac {3}{2}}}{2}}\right)^{\frac {2}{3}}\,,}

который отличается от точного результата менее чем на 1 мкм (4 × 10 -5 дюймов  ); среднее значение двух осей,

Mr≈a+b2,{\displaystyle M_{\mathrm {r} }\approx {\frac {a+b}{2}}\,,}

около 6367,445 км (3956,547 миль), также можно использовать.

Глобальный средний радиус кривизны

R4=12∫−π2π2cos⁡φRa(φ)dφ=a21e2−1ln⁡1+e1−e.{\displaystyle R_{4}={\frac {1}{2}}\int _{-{\frac {\pi }{2}}}^{\frac {\pi }{2}}\!\cos \varphi \,R_{\mathrm {a} }(\varphi )\,d\varphi ={\frac {a}{2}}\,{\sqrt {{\frac {1}{e^{2}}}-1}}\,\ln {\frac {1+e}{1-e}}.}

Для эллипсоида WGS 84 средняя кривизна равна 6370,994 км (3958,752 миль). необходима цитата

Натурные исследования

Современные знания относительно состава поверхности и внутренней структуры планет основываются на  измерениях автоматических станций. При этом используется опыт, полученный в результате изучения структуры и состава Земли.

Но что такое все измерения, проведенные или принятые на расстоянии, по сравнению с подлинным куском породы, привезенным с Луны, который можно взвесить, измерить, над которым можно сидеть и до бесконечности придумывать новые процессы и методы получения от него возможно большего количества информации?

Но у нас на Земле есть не только кусок Луны. Мы располагаем еще одной группой свидетелей, которые могут рассказать гораздо больше, чем поверхность уже готовой Луны, которые это знают, но пока молчат. Это — метеориты, представляющие собой как бы кем-то написанную книгу о развитии нашей системы, отдельные страницы которой сбрасываются на поверхность Земли без соблюдения их последовательности. Хотя мы знаем химический состав метеоритов.

Вот когда нам удастся точно узнать из чего состоят планеты, то сможем правильно сложить страницы и эту планетарную книгу прочитать…

Отдалённые области

Вопрос о том, где именно заканчивается Солнечная система и начинается межзвёздное пространство, неоднозначен.

Ключевыми в их определении принимают два фактора: солнечный ветер и солнечное тяготение. Внешняя граница солнечного ветра — гелиопауза, за ней солнечный ветер и межзвёздное вещество смешиваются, взаимно растворяясь.

Гелиопауза находится примерно в четыре раза дальше Плутона и считается началом межзвёздной среды.

Однако предполагают, что область, в которой гравитация Солнца преобладает над галактической — сфера Хилла, простирается в тысячу раз дальше.

Облако Оорта

Гипотетическое облако Оорта — сферическое облако ледяных объектов (вплоть до триллиона), служащее источником долгопериодических комет. Предполагаемое расстояние до внешних границ облака Оорта от Солнца составляет от 50 000 а. е. (приблизительно 1 световой год) до 100 000 а. е. (1,87 св. лет).

Полагают, что составляющие облако объекты сформировались около Солнца и были рассеяны далеко в космос гравитационными эффектами планет-гигантов на раннем этапе развития Солнечной системы.

Строение Солнечной системы

Строение и состав Солнечной системы выглядит так:

  • Центральное место занимает Солнце. Оно состоит из водорода и
    гелия. Температура поверхности превышает отметку, 6000°С.
  • 99,86% массы системы приходится на светило.
  • Солнце относится к разряду желтых карликовых звёзд по принятой
    учеными звездной классификации.
  • Вокруг звезды вращаются 8 открытых планет, которые делятся на 2
    группы: планеты земного типа и газовые гиганты.

Восемь планет разделены на две группы:

  1. Планеты земной группы. Сюда входят Венера, Земля, Меркурий и Марс. Они обладают каменистой структурой и расположены вблизи от Солнца.
  2. Планеты гиганты. Юпитер, Сатурн, Уран и Нептун. Это крупные небесные тела, которые состоят из газов. У них есть кольца из ледяной пыли скалистых элементов.