Сколько километров в световом году, и равен ли он земному

[править] Физическая природа и свойства света

Благодаря дисперсии белый свет можно разложить в спектр с помощью призмы

Как и любые другие электромагнитные волны, свет характеризуется частотой, длиной волны, поляризацией и интенсивностью. В вакууме свет распространяется с постоянной скоростью, не зависящей от системы отсчета — скоростью света. Скорость распространения света в веществе зависит от свойств вещества и в целом меньше скорости света в вакууме. Длина волны связана с частотой законом дисперсии, который также определяет скорость распространения света в среде.

Взаимодействуя с веществом, свет рассеивается и поглощается. При переходе из одной среды в другую изменяется скорость распространения света, что приводит к преломлению. Наряду с преломлением на границе двух сред свет частично отражается. Преломление и отражение света используется в различных оптических приборах: призмах, линзах, зеркалах, позволяющих формировать изображение.

Излучение и поглощение света происходит квантами: фотонами, энергия которых зависит от частоты:

E = h \nu ,

где E — энергия кванта, \nu  — частота, h — постоянная Планка.

Обычный дневной свет состоит из некогерентных электромагнитных волн с широким набором частот. Такой свет принято называть белым. Белый свет имеет спектр, который соответствует спектру излучения Солнца. Свет с другим спектром воспринимается как цветной. Дисперсия света позволяет разложить свет на цветные составляющие.

Как и любая другая электромагнитная волна, свет характеризуется поляризацией. Дневной свет обычно неполяризованный или частично поляризованный. Степень поляризации света меняется при каждом акте отражения от любой поверхности или прохождения через любую среду.

Свет переносит энергию. В частности, солнечный свет является одним из основных источников энергии на Земле. Часть этой энергии воспринимается живыми организмами при фотосинтезе. Использование солнечной энергии человечеством — одна из важнейших современных проблем.

Как измеряют скорость света?

Наблюдения Олаф Рёмера

Ученые античности в своем большинстве полагали, что свет движется с бесконечной скоростью, и первая оценка скорости света была получена аж в 1676-м году. Датский астроном Олаф Рёмер наблюдал за Юпитером и его спутниками. В момент, когда Земля и Юпитер оказались с противоположных сторон Солнца, затмение спутника Юпитера – Ио запаздывало на 22 минуты, по сравнению с рассчитанным временем. Единственное решение, которое нашел Олаф Рёмер – скорость света предельна. По этой причине информация о наблюдаемом событии запаздывает на 22 минуты, так как на прохождение расстояния от спутника Ио до телескопа астронома требуется некоторое время. Согласно подсчетам Рёмера скорость света составила 220 000 км/с.

Измерение скорости света Олафом Рёмером

Наблюдения Джеймса Брэдли

В 1727-м году английский астроном Джеймс Брэдли открыл явление аберрации света. Суть данного явления состоит в том, что при движении Земли вокруг Солнца, а также во время собственного вращения Земли наблюдается смещение звезд в ночном небе. Так как наблюдатель землянин и сама Земля постоянно меняют свое направление движения относительно наблюдаемой звезды, свет, излучаемый звездой, проходит различное расстояние и падает под разным углом к наблюдателю с течением времени. Ограниченность скорости света приводит к тому, что звезды на небосводе описывают эллипс в течение года. Данный эксперимент позволил Джеймсу Брэдли оценить скорость света — 308 000 км/с.

Звездная аберрация, обнаруженная Брэдли

Опыт Луи Физо

В 1849-м году французским физиком Луи Физо был поставлен лабораторный опыт по измерению скорости света. Физик установил зеркало в Париже на расстоянии 8 633 метров от источника, однако согласно расчетам Рёмера свет пройдет данное расстояние за стотысячные доли секунды. Подобная точность часов тогда была недостижима. Тогда Физо использовал зубчатое колесо, которое вращалось на пути от источника к зеркалу и от зеркала к наблюдателю, зубцы которого периодически закрывали свет. В случае, когда световой луч от источника к зеркалу проходил между зубцами, а на обратном пути попадал в зубец – физик увеличивал скорость вращения колеса вдвое. С увеличением скорости вращения колеса свет практически перестал пропадать, пока скорость вращения не дошла до 12,67 оборотов в секунду. В этот момент свет снова исчез.

Подобное наблюдение означало, что свет постоянно «натыкался» на зубцы и не успевал «проскочить» между ними. Зная скорость вращения колеса, количество зубцов и удвоенное расстояние от источника к зеркалу, Физо высчитал скорость света, которая оказалась равной 315 000 км/сек.

Схема опыта Луи Физо

Спустя год другой французский физик Леон Фуко провел похожий эксперимент, в котором вместо зубчатого колеса использовал вращающееся зеркало. Полученное ним значение скорости света в воздухе равнялось 298 000 км/с.

Спустя столетие метод Физо был усовершенствован настолько, что аналогичный эксперимент, поставленный в 1950-м году Э. Бергштрандом дал значение скорости равное 299 793,1 км/с. Данное число всего на 1 км/с расходится с нынешним значением скорости света.

Дальнейшие измерения

С возникновением лазеров и повышением точности измерительных приборов удалось снизить погрешность измерения вплоть до 1 м/с. Так в 1972-м году американские ученые использовали лазер для своих опытов. Измерив частоту и длину волны лазерного луча, им удалось получить значение – 299 792 458 м/с. Примечательно, что дальнейшее увеличение точности измерения скорости света в вакууме было нереализуемо в не в силу технического несовершенства инструментов, а из-за погрешности самого эталона метра. По этой причине в 1983-м году XVII Генеральная конференция по мерам и весам определила метр как расстояние, которое преодолевает свет в вакууме за время, равное 1 / 299 792 458 секунды.

Расстояние от Земли до Луны равняется 1,25 световых секунды

Длина волны

Это самая важная характеристика для волны. Ей называется расстояние между двумя точками этой волны, колеблющихся в одной фазе. Если проще, то это расстояние между двумя «гребнями».

Обозначается эта величина буквой λ и измеряется в метрах.

Еще длиной волны можно назвать расстояние, пройденное волной, за один период колебания.

Период

Период — это время, за которое происходит одно колебание. То есть, если дано время распространения волны и количество колебаний, можно рассчитать период.

Формула периода колебания волны

T = t/N

T — период

t — время

N — количество колебаний

Для электромагнитных волн есть целая шкала длин волн. Она показывает длину волны и частоту для разных типов электромагнитных волн.

Частота

Частота — это величина, обратно пропорциональная периоду. Она определяет, сколько колебаний в единицу времени совершила волна.

Формула частоты колебания волны

υ = N/t = 1/T

υ — частота

t — время

N — количество колебаний

T — период

Скорость

Также важной характеристикой распространения волны является ее скорость. Чтобы вывести формулу скорости через длину волны, нужно вспомнить формулу скорости из кинематики — это раздел физики, в котором изучают движение тел без учета внешнего воздействия

Чтобы вывести формулу скорости через длину волны, нужно вспомнить формулу скорости из кинематики — это раздел физики, в котором изучают движение тел без учета внешнего воздействия.

Формула скорости

𝑣 = S/t

𝑣 — скорость [м/с]

S — путь

t — время

Переходя к волнам, можно провести следующие аналогии:

  • путь — длина волны
  • время — период

А для скорости даже аналогия не нужна — скорость и Африке скорость.

Формула скорости волны

𝑣 = λ/T

𝑣 — скорость [м/с]

λ — длина волны

T — период

Для электромагнитной волны скорость равна скорости света — 𝑣 = 3*10^8 м/с. Поэтому формулу скорости чаще всего используют для нахождения из нее длины волны или периода.

Задачка

Определить цвет освещения, проходящий расстояние, в 1000 раз больше его длины волны за 2 пс.

Решение:

Для начала переведем 2 пикасекунды в секунды — это 2*10^-12 с.

Теперь возьмем формулу скорости

𝑣 = S/t

По условию S = 1000λ

То есть

𝑣 = 1000λ/t

Выражаем длину волны

λ = 𝑣t/1000

Подставляем значения скорости света и известного нам времени:

λ = 3*108* 2*10-121000 =600 нм

И соотносим со шкалой видимого света

Из шкалы видно, что длине волны в 600 нм соответствует оранжевый цвет излучения.

Ответ: цвет освещения при заданных условиях будет оранжевым.

Что считает общая теория относительности?

В дальнейшем Эйнштейн развил теорию относительности более общего назначения, которая объяснила гравитацию как проявление искривления пространства-времени и показал, что скорость света в этой новой теории изменяется. В 1920 г. в своей книге «Относительность: частная и общая теории» он писал: …согласно общей теории относительности, закон постоянства скорости света в вакууме, представляющий собой один из двух главнейших предположений частной теории относительности, … не может быть безусловным. Кривизна лучей света может наблюдаться только если скорость его распространения изменяется с местоположением. В оригинале речь идет о векторе скорости, то есть, о направленном объекте, поэтому сразу не очевидно, утверждал ли Эйнштейн, что меняется и длина вектора, а не только направление. Однако ссылка на специальную теорию относительности показывает, что утверждал. Хотя это и верно, но современная интерпретация такова, что скорость света постоянна и в общей теории относительности.

Проблема тут в том, что скорость – это величина, которая зависит от координат, то есть, она в некотором смысле неоднозначна. Чтобы определить скорость (расстояние делить на время) сначала надо выбрать какие-то стандарты измерения расстояний и времен. Разные стандарты приведут к разным результатам. Это уже так в специальной теории: если измерить скорость света в ускоренной системе отсчета, то получится значение, отличное от c.

В специальной теории постоянство скорости света утверждается лишь с точки зрения инерциальных систем отсчета. В общей теории это утверждения расширяется до утверждения о постоянстве скорости света в любой свободно падающей системе отсчета (в области, достаточно малой, чтобы можно было пренебречь приливными силами). В вышеупомянутом отрывке Эйнштейн говорит не о свободно падающей системе, а о системе, неподвижной относительно источника гравитации. В такой системе скорость света может отличаться от c в основном из-за влияния гравитации (кривизны пространства-времени) на часы и линейки.

Если общая теория относительности верна, то постоянство скорости света в инерциальных системах отсчета становится синонимом геометрических свойств пространства-времени. Причинная структура Вселенной определяется геометрией нулевых векторов. Движение со скоростью c означает движение по мировым линиям, касательным нулевым векторам. Применение c для преобразования между метрами и секундами, как в определении метра в системе СИ, совершенно оправдано как с практической, так и с теоретической точки зрения, ведь c это не столько скорость движения света, сколько фундаментальная особенность геометрии пространства-времени.

Как и для частной теории, предсказания общей теории относительности были подтверждены во множестве различных опытах.

В итоге можно сказать, что скорость света не просто постоянна. Более того, в свете хорошо проверенных теорий оказывается, что предположение о том, что она может измениться – просто бессмысленны!

*Строго говоря, показатель преломления не всегда больше единицы. Например, для рентгеновских лучей он почти всегда меньше единицы. Происходит это потому, что так называемая фазовая скорость рентгеновских лучей в среде больше скорости света, а показатель преломления это отношение именно фазовой скорости. Скорость же самих фотонов – это так называемая групповая скорость, которая всегда меньше c (конечно, кроме тех случаев, когда это не так :-). Для простоты в этом ответе мы эту тонкость не рассматриваем. См.

Чему равен 1 световой год в километрах

Для расчета взяли за основу 365 суток. Если вычислить суточную величину в секундах, то получится 86 400 секунд. А во всех указанных сутках их число составит 31 557 600.

Мы посчитали, какое расстояние проходит луч света за секунду. Умножив эту величину на 31 557 600, получим чуть более 9,4 триллиона. Это световой год, измеренный в километрах. Именно это расстояние пройдет световой луч за 365 суток в вакууме. Такой путь он проделает, облетая земную орбиту без воздействия полей гравитации.

Примеры некоторых расстояний, рассчитанных подобным образом

  • Расстояние от Земли до Луны луч света преодолевает за 1 минуту 3 секунды;
  • В 100 000 таких лет можно определить диаметр нашего галактического диска;
  • Расстояние в световых часах от Солнца до Плутона равно 5,25 часа;
  • Галактику Андромеду луч с земли достигнет через 2 500 000 световых лет, а звезду Проксима Центавра всего за 4;
  • Солнечный свет доходит до нашей планеты за 8,20 минуты;
  • На расстоянии 26 тыс. световых лет расположен от Солнца Центр нашей Галактики;
  • Скопление Девы расположено на расстоянии 58 000 тысяч подобных лет от нашей планеты;
  • Десятками миллионов таких лет измеряются скопления галактик по диаметру;
  • Максимальное измеренное расстояние от Земли до края видимой Вселенной составило 45 млрд световых лет.

Виды электромагнитного излучения

ЭМИ разделено на виды по характеристикам длины и частоты.

Длина волн колеблется в таких диапазонах:

  1. Радиоволны (от 0,1 мм до 10 км и более) делятся на короткие, ультракороткие, средние, длинные и сверхдлинные. Ультракороткие радиоволны относятся к сверхвысокочастотным (СВЧ) волнам.
  2. Инфракрасные лучи (от 1 мм до 780 нм).
  3. Ультрафиолетовые лучи (от 380 мм до 10 нм).
  4. Видимый свет (от 780 мм до 380 нм).
  5. Рентген-излучение (от 10 нм до 5 пм).
  6. Гамма-лучи (до 5 пм).

Частота волн варьируется от 30 кГц (для радиоволн) до 6×10¹9 Гц и более (для гамма-лучей).

Волны разной длины образуются разными способами:

  • рентгеновские появляются тогда, когда быстро движущиеся электроны переходят в состояние с меньшей энергией вследствие торможения;
  • ультрафиолетовое излучается вследствие движения ускоренных электронов;
  • инфракрасное излучение испускается раскаленными предметами;
  • радиоволны образуются из высокочастотных токов, движущихся по антеннам;
  • ионизирующее гамма-излучение испускается в процессе ядерных реакций.

Вышеперечисленные виды волн поглощаются веществами неодинаково: рентгеновские и гамма-волны проникают сквозь ткани организма и почти не поглощаются, инфракрасные лучи проходят сквозь ряд непрозрачных объектов, при поглощении происходит нагрев вещества.

Свойства электромагнитных волн

Важнейшим результатом, который вытекает из сформулированной Максвеллом теории электромагнитного поля, стало предсказание возможности существования электромагнитных волн. Электромагнитная волна – распространение электромагнитных полей в пространстве и во времени.

Источник электромагнитного поля – электрические заряды, движущиеся с ускорением.

Электромагнитные волны, в отличие от упругих (звуковых) волн, могут распространяться в вакууме или любом другом веществе.

Электромагнитные волны в вакууме распространяются со скоростью c=299 792 км/с, то есть со скоростью света.

В веществе скорость электромагнитной волны меньше, чем в вакууме. Соотношение между длиной волна, ее скоростью, периодом и частотой колебаний, полученные для механических волн выполняются и для электромагнитных волн:

Колебания вектора напряженности E и вектора магнитной индукции B происходят во взаимно перпендикулярных плоскостях и перпендикулярно направлению распространения волны (вектору скорости).

Электромагнитная волна переносит энергию.

Диапазон электромагнитных волн

Вокруг нас сложный мир электромагнитных волн различных частот: излучения мониторов компьютеров, сотовых телефонов, микроволновых печей, телевизоров и др. В настоящее время все электромагнитные волны разделены по длинам волн на шесть основных диапазонов.

Радиоволны – это электромагнитные волны (с длиной волны от 10000 м до 0,005 м), служащие для передачи сигналов (информации) на расстояние без проводов. В радиосвязи радиоволны создаются высокочастотными токами, текущими в антенне.

Электромагнитные излучения с длиной волны, от 0,005 м до 1 мкм, т.е. лежащие между диапазоном радиоволн и диапазоном видимого света, называются инфракрасным излучением. Инфракрасное излучение испускают любые нагретые тела. Источником инфракрасного излучения служат печи, батареи, электрические лампы накаливания. С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте.

К видимому свету относят излучения с длиной волны примерно 770 нм до 380 нм, от красного до фиолетового цвета. Значение этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения.

Невидимое глазом электромагнитное излучение с длиной волны меньше, чем у фиолетового цвета, называют ультрафиолетовым излучением. Оно способно убивать болезнетворные бактерии.

Рентгеновское излучение невидимо глазом. Оно проходит без существенного поглощения через значительные слои вещества, непрозрачного для видимого света, что используют для диагностики заболеваний внутренних органов.

Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными ядрами и возникающее при взаимодействии элементарных частиц.

Что считает специальная теория относительности?

Другое предположение, взятое за основу в системе СИ – это то, что специальная теория относительности верна. Основным постулатом теории относительности является то, что скорость света постоянна. Данное утверждение распадается на две части:

  • Скорость света не зависит от движения наблюдателя.
  • Скорость света не меняется в зависимости от места или времени.

Мысль о том, что скорость света не зависит от скорости наблюдателя очень противоречит нашим интуитивным представлениям. Некоторые люди вообще отказываются принимать, что это возможно с точки зрения логики, но в 1905 г. Эйнштейну удалось показать, что все совершенно логично, если быть готовым отказаться от предубеждений об абсолютном характере пространства и времени.

В 1879 г. думали, что свет должен распространяться по особой среде, точно так же, как звук распространяется по воздуху и другим веществам. Эту среду называли эфиром. Двое ученых, Майкельсон и Морли, поставили опыт в котором попытались обнаружить эфир, измеряя разницу в скорости света по мере того, как Земля меняет направление своего движения в течение года. К их удивлению, обнаружить различие в скорости света не удалось.

Тогда Фитцджеральд предположил, что причиной тому является сокращение экспериментальной установки при движении сквозь эфир, в точности компенсирующее изменение скорости света. Лоренц далее развил это предположение, добавив к нему замедление хода часов так, чтобы движение эфира оказывалось совершенно ненаблюдаемым. Затем Эйнштейн доказал, что эти искажения можно объяснить искажением самих пространства и времени, а не физических объектов и что, таким образом, абсолютность пространства и времени, введенная Ньютоном, должна быть отвергнута. Сразу после этого математик Минковский показал, что теория относительности Эйнштейна может быть понята как неевклидова геометрия в 4-мерном пространстве-времени.

Окончателная теория не только математически и логически самосогласована, но подтверждается и большим количеством прямых опытов. Опыт Майкельсона и Морли много раз повторяли, со все большей точностью. В 1925 г. Дэйтон Миллер объявил, что он обнаружил-таки изменение скорости светы и он даже был удостоен нескольких наград за это открытие, но проведенная в 1950 г. экспертиза его работы показала, что наиболее вероятно, что причиной обнаруженных им явлений были суточные и годичные изменения температуры установки, то есть, его результаты были признаны ошибочными.

При помощи современного оборудования легко можно было бы обнаружить движение эфира, если бы он существовал. Земля движется вокруг Солнца со скоростью 30 км/с, поэтому, если справедливо векторное сложение скоростей, как этого требует механика Ньютона, то в определении метра в системе СИ последние 5 цифр скорости света были бы бессмысленными. Сегодня в физике высоких энергий в ЦЕРНе и лаборатории Ферми ежедневно ускоряют частицы до скоростей на волосок отличающихся от скорости света. Если бы скорость света зависела бы от скорости системы отсчета, это было бы давно обнаружено, если конечно эта зависимость на самом деле не является ничтожной.

Инерциальные системы и динамика

Против условности односторонней скорости света приводился аргумент, что это понятие тесно связано с динамикой , законами движения и инерциальными системами отсчета . Сэлмон описал некоторые варианты этого аргумента, используя закон сохранения импульса , из которого следует, что два равных тела в одном и том же месте, которые одинаково ускоряются в противоположных направлениях, должны двигаться с одинаковой односторонней скоростью. Точно так же Оганян утверждал, что инерциальные системы отсчета определены таким образом, что законы движения Ньютона выполняются в первом приближении. Следовательно, поскольку законы движения предсказывают изотропные односторонние скорости движущихся тел с равным ускорением, и из-за экспериментов, демонстрирующих эквивалентность между синхронизацией Эйнштейна и синхронизацией медленного транспорта часов, кажется, что необходимо и непосредственно измерить, что одно- Путь скорости света изотропен в инерциальных системах отсчета. В противном случае и концепция инерциальных систем отсчета, и законы движения должны быть заменены гораздо более сложными, включающими анизотропные координаты.

Однако другие показали, что это принципиально не противоречит условности односторонней скорости света. Сэлмон утверждал, что сохранение импульса в его стандартной форме с самого начала предполагает изотропную одностороннюю скорость движущихся тел. Таким образом, он включает практически то же соглашение, что и в случае изотропной односторонней скорости света, поэтому использование этого в качестве аргумента против условности скорости света было бы круговым. И в ответ Оганяну и Макдональд, и Мартинес утверждали, что даже несмотря на то, что законы физики усложняются из-за нестандартной синхронности, они по-прежнему являются последовательным способом описания явлений. Они также утверждали, что нет необходимости определять инерциальные системы отсчета в терминах законов движения Ньютона, потому что возможны и другие методы. Кроме того, Айер и Прабху различали «изотропные инерциальные системы отсчета» со стандартной синхронностью и «анизотропные инерциальные системы отсчета» с нестандартной синхронностью.

Опровержение постулата о максимальности скорости света[править]

В последние годы появляются работы показывающие, что в так называемой квантовой телепортации взаимодействие распространяется быстрее скорости света. Например, 15 августа 2008 г. исследовательская группа доктора Николаса Гизена (Nicolas Gisin) из университета Женевы, исследуя разнесенные на 18 км в пространстве связанные фотонные состояния, показала, что «взаимодействие между частицами осуществляется со скоростью, примерно в сто тысяч раз большей скорости света» Опровергнут фундаментальный принцип современной физики.. Также существует так называемый парадокс Хартмана — сверхсветовая скорость при туннельном эффекте.

Однако приверженцы догматической науки бездоказательно наставивают, что эти эффекты не могут быть использованы для сверхсветовой передачи какого-либо сигнала или перемещения вещества Иванов Игорь. Проведены новые эксперименты по проверке механизма квантовой запутанности.

Что такое скорость света своими словами?

Если говорить простым языком, скорость света – это время, за которое солнечный луч преодолевает определенное расстояние. В качестве единицы времени принято использовать секунду, в качестве расстояния – метр. С точки зрения физики свет – это уникальное явление, имеющее в конкретной среде постоянную скорость.

Предположим, человек бежит со скоростью 25 км/час и пытается догнать автомобиль, который едет со скоростью 26 км/час. Выходит, что машина движется на 1 км/час быстрее бегуна. Со светом всё обстоит иначе. Независимо от быстроты передвижения автомобиля и человека, луч всегда будет передвигаться относительно них с неизменной скоростью.

Зависимость скорости света от оптической плотности среды?

При переходе в оптически более плотную прозрачную среду скорость света немного уменьшается, из-за этого луч света как бы прижимается к воображаемому перпендикуляру, проходящему в точке падения к границе раздела сред, искривляясь, то есть преломляясь. Поэтому, наблюдая закат, мы ещё некоторое время видим свет солнца, спрятавшегося за горизонт.

Скорость света в воде тоже изменяется. При переходе из воздуха в воду свет немного тормозится и изменяет своё направление – преломляется. Из-за преломления света, есть области берега, которые даже при небольшом погружении в воду, становятся просто невидимыми. Это области полного отражения света.

Ещё одно явление объясняется изменением скорости света в воде. Человеку кажется, что дно водоёма близко, он ныряет и вдруг обнаруживает, что очень ошибся, оценивая глубину «на глаз». Свет состоит из потока излучений разного цвета. Пока свет двигается вдоль прямой, мы этого не замечаем и свет кажется белым. Но стоит его немного повернуть, например, как это сделал Ньютон с помощью стеклянной призмы, то сразу на стене появляется весь спектр этих излучений – все цвета радуги.

То есть в оптически более плотной среде свет не просто замедляется, а все его составляющие компоненты излучения замедляются неодинаково, то есть приобретают разные скорости. Самым быстрым является красное излучение, а самым медленным – фиолетовое. Поэтому мы можем наблюдать радугу в капельках воды. Физики называют это явление дисперсией.

Фото: таблица скорости света в различных средах.

Шутки света

Поскольку скорость в воздухе зависит от его температуры (более прогретые участки воздуха дают искривление направления движения лучей, преломляют их), постольку и случается людям наблюдать такие «забавные» явления природы, как миражи, призраки и летучие голландцы. Один такой мираж часто наблюдают все люди: в жару, в потоке прогретого асфальтом воздуха, дорога кажется более яркой, мокрой. Преломление света в капельках воды и кристалликах льда даёт другие эффектные оптические явления: радуга, гало, паргелий, глория и др.

Скорость распространения света

Когда мы включаем свет, комната озаряется светом моментально. Поэтому кажется, что свету нисколько не нужно времени, чтобы достигнуть стен. Но это не так, просто свет распространяется с такой большой скоростью, что это непросто заметить в обычных условиях.

Впервые конечность скорости света удалось установить О. Рёмеру (датскому ученому) в 1676 г. Он наблюдал за затмением Ио — спутника Юпитера. Он видел, как ИО проходил перед планетой, а затем погружался в ее тень и пропадал из поля зрения. Затем он опять появлялся, как мгновенно вспыхнувшая лампа. Промежуток времени между двумя вспышками был равен 42 ч 28 мин. Поэтому спутник представлял для астронома космические часы, которые посылали сигналы на Землю через равные промежутки времени.

Сначала Рёмер делал измерения, когда Земля при своем движении вокруг Солнца подошла к Юпитеру максимально близко. Затем он повторил их в момент, когда Земля максимально удалилась от Юпитера. Измерения показали, что во втором случае спутник появился на 22 минуты позже по сравнению с первым результатом. Ученый объяснил это явление так: «Если бы я мог остаться на другой стороне земной орбиты, то спутник всякий раз появлялся бы из тени в назначенное время; наблюдатель, находящийся там, увидел бы Ио на 22 минуты раньше. Запаздывание в этом случае происходит оттого, что свет употребляет 22 мин на прохождение от места моего первого наблюдения до моего теперешнего положения».

Зная опаздывание появления Ио и расстояние, которым оно вызвано, можно определить скорость, разделив это расстояние на время опаздывания. Из-за неточности измерений и неточного знания радиуса земной орбиты Рёмер получил скорость света, равную 215 000 км/с. Если провести расчеты с более точными данными, результат получается максимально приближенным к реальному значению скорости света — около 300 000 км/с.

Позже измерения скорости света повторили другие ученые. В 1849 году И. Физо (французский ученый) сделал расчеты, в результате которых он получил значение 313 000 км/с. В 1856 году была измерена скорость света в воде, которая оказалась в 4/3 раз меньше по сравнению со скоростью света в космосе (вакууме). Так же было установлено, что скорость света в средах всегда меньше скорости света в вакууме.

По современным данным принято считать, что скорость света равна 299 792 458 м/с с точностью ±1,2 м/с. Обозначают эту величину как c. Единица измерения в СИ — м/с.

Внимание!

При выполнении расчетных задач скорость света принято принимать за величину c = 3∙108 м/с.

Что такое скорость света?

Давайте для начала разберемся, что такое скорость света. По-научному, это такая величина, которая показывает, насколько быстро перемещаются лучи в вакууме или в воздухе. Также нужно знать, что такое свет. Это излучение, которое воспринимается человеческим глазом. От условий окружения зависит быстрота, а также другие свойства, например, преломление.

Интересный факт: свету требуется 1,25 секунды, чтобы добраться от Земли до спутника — Луны.

Свет от Луны до Земли