Сколько нулей в миллионе, миллиарде и триллионе — 2021

Содержание

Однозначные, двузначные и трехзначные натуральные числа

Однозначное натуральное число — это такое число, в составе которого один знак, одна цифра. Девять однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.

Двузначные натуральные числа — те, в составе которых два знака, две цифры. Цифры могут повторяться или быть различными. Например: 88, 53, 70.

Если множество предметов состоит из девяти и еще одного, значит, речь идет об 1 десятке («один десяток») предметов. Если один десяток и еще один, значит, перед нами 2 десятка («два десятка») и так далее.

По сути, двузначное число — это набор однозначных чисел, где одно записывается справа, а другое слева. Число слева показывает количество десятков в составе натурального числа, а число справа — количество единиц. Всего двузначных натуральных чисел — 90.

Трехзначные натуральные числа — числа, в составе которых три знака, три цифры. Например: 666, 389, 702.

Одна сотня — это множество, состоящее из десяти десятков. Сотня и еще одна сотня — 2 сотни. Прибавим еще одну сотню — 3 сотни.

Вот как происходит запись трехзначного числа: натуральные числа записываются одно за другим слева направо.

Крайнее правое однозначное число указывает на количество единиц, следующее — на количество десятков, крайнее левое — на количество сотен. Цифра 0 показывает отсутствие единиц или десятков. Поэтому 506 — это 5 сотен, 0 десятков и 6 единиц.

Точно так же определяются четырехзначные, пятизначные, шестизначные и другие натуральные числа.

Класс миллионов и класс миллиардов

Вы когда-нибудь задумывались о том, где и когда человек использует крупные единицы счета: тысячи, миллионы и даже миллиарды? Числа-великаны окружают нас всюду. Например:

  • Расстояние от Солнца до Меркурия 58 миллионов километров.
  • А вот расстояние от Солнца до Сатурна более 1 миллиарда 400 миллионов километров.
  • Наша Вселенная образовалась в результате большого взрыва около 15 миллиардов лет назад.
  • 230 миллионов лет назад появились первые динозавры на планете.
  • Солнце появилось приблизительно 4 миллиарда 6 миллионов лет назад.
  • На Земле проживает более 7 миллиардов 763 миллионов человек.

Сосчитайте, сколько нулей содержит миллион? Верно, 6.

В III классе, классе миллионов, три разряда: единицы миллионов, десятки миллионов, сотни миллионов.

Сколько нулей содержит миллиард? Верно, 9.

Ребята, а вам любопытно узнать, есть ли числа больше класса миллиардов, и как они называются? Посмотрите таблицу, прочитайте название чисел, сосчитайте количество нулей.

Это интересно!

 

Это интересно! Ребята, вы слышали о путешественнике Марко Поло? Путешествуя по Китаю, восхищаясь богатствами этой страны, пришло ему в голову слово «миллион». Разделим это слово на две части:

-милли- в переводе с итальянского языка означает тысяча;

-оне- соответствует русскому увеличительному суффиксу –ищ- (например, ручища или домище). Получается дословный перевод: тысячища. Конечно, такого слова в русском языке нет, но все равно понятно, что это что-то просто огромное!

Уравнение икс в степени икс

Рассмотрим, как люди легко оперируют с бесконечными числами. Когда-то в чести были не только цифровые компьютерные методы, но и аналитические, с помощью формул. Тогда существовали задачки, использующие бесконечно большие величины.

Например, предлагалось определить значение x (старое забытое школьное «икс»!) в выражении с бесконечным числом этих самых «иксов»:

Рис. 5. Пример уравнения с бесконечным числом элементов. «Икс» возводим в степень «икс» бесконечное число раз, а в итоге получаем лишь «двоечку».

Как это ни странно, решается такое уравнение очень просто. Рассуждения следующие. Если число «иксов» бесконечно, то ничто не мешает нам приписать к этому бесконечному множеству «иксов» еще один «икс» – слева внизу от всей «плеяды иксов». Ведь от этого ничего не изменится, не правда ли? Бесконечное число «иксов» плюс еще один «икс» – все равно останется бесконечное число.

Ну, приписали, и что? Вспомним, что ранее записанная цепочка из бесконечного множества «иксов» равнялась 2, по условию задачи. И новая цепочка с дополнительным «иксом» слева тоже равна 2, поскольку новый «икс» ничего не поменял в бесконечности. А раз так, тогда можно запросто заменить всю старую цепочку из бесконечных «иксов» на одну единственную «двойку», ведь старая цепочка была равна 2!

В итоге получается на удивление просто: новый дополнительный «икс» станет у нас во второй степени. А результат будет равен двойке, как и раньше:

Рис. 6. Простейшее уравнение, которое получается в итоге, если правильно обработать цепочку из бесконечного числа «иксов».

Еще раз пройдемся по логике: «двоечка» над «иксом» – это та самая бесконечная плеяда «иксов», которая ранее была у нас равна двойке. Сам «икс» – это еще один приписанный нами «икс» к бесконечной цепочке «иксов», ведь от такой приписки ничего не меняется. А раз ничего не меняется, то полученный результат тоже не меняется, и он равен «двойке».

Получаем решение уравнения с бесконечным числом «иксов»:

Рис. 7. Решение простейшего уравнения (рис. 6), которое получилось в результате замены бесконечной цепочки «иксов» (рис. 5) на одну единственную «двойку».

Проверяем полученный ответ:

Рис. 8. Проверка решения простейшего уравнения (рис. 6), полученного в результате обработки уравнения с бесконечным числом «иксов» (рис. 5).

«Великое переселение» ноля

С изобретением ноля в десятичной позиционной системе произошла революция – всё стало на свои места и получило строгую иерархию, а расчёты существенно упростились (наконец-то можно производить расчёты в столбик!) И вот, когда в 7 веке арабы вторглись на территорию Индии – и отсюда привнесли в свою науку новое понятие. Именно у арабов индийская система получила развитие и обросла новыми терминами – «алгебра», «алгоритм» и др. Здесь ноль назывался «аль-сифр», от которого происходит наше слово «цифра» (правда, применяемое ко всем 10 знакам, а не только нолю) – а от него произошло слова «шифр». Другое название – «zephirum», то есть «зефир», как ещё называют ветер (отсюда англиское название ноля — «зеро»). Через арабов позиционная система счета пришла в Европу – и хоть мы привыкли называть цифры «арабскими», они являются не иначе как индийскими, а сами арабы никогда не приписывали себе подобной заслуги.

Самое большое число, записанное тремя цифрами

Вернемся просто к числам, без особой практической пользы, то есть, к абстрактным величинам. Как Вы думаете, какое самое большое число можно вот так запросто взять и записать, используя для этого всего 3 цифры? Оказывается, такое число записывается как девять в степени девять в степени девять:

Рис. 4. Самое большое число, которое можно записать с помощью всего трех цифр.

Всего три девятки, а число получается фантастическое по своей величине! Начинается оно с цифр

428 124 773 175 747 048 036 987 118,

а заканчивается на 89. Что в середине этого числа, не знает никто! Потому что в этом числе 369 693 061 цифра! Более 369 миллионов цифр!

Древний Архимед известен много чем, и еще законом Архимеда. Когда-то он посчитал, что если весь мир (известный тогда) вплоть до неподвижных звезд (как тогда считалось) наполнить тончайшим песком, то получится количество песчинок в виде числа с 63-я цифрами. А здесь не 63 цифры, а почти 370 миллионов цифр!

Даже если пересчитать все электроны, что имеются в нашей Вселенной, мы не получим столь огромной величины. Вот так всего-то три цифры позволяют нам показать несоразмерной величины числа. И даже позволяют нам потом с этими числами оперировать.

Золотое сечение

Пожалуй, это самое важное соотношение в мире. Напоминаем: его вывели греки

А вот список его основных характеристик:

  • Его обратное значение 0,618 равно 1 + 0,618. Следовательно, 1 / ϕ ≈ 1 + ϕ
  • Золотое сечение встречается в дикой природе. И некоторые деревья — тому подтверждение. Главный ствол пускает ветвь. На следующий год он отдыхает, а через год пускает еще одну ветвь. Получается, изначально есть главный ствол, через год — две ветви, еще через год — три, затем пять, восемь, тринадцать. Учитывая старые и новые ветви, выходит число Фибоначчи.
  • Считается, что золотое сечение олицетворяет красоту. И хотя это убеждение не доказано, мы думаем, интересно узнать, как человек вообще распознает красоту. Например, лицо. Существует 10-балльная шкала, согласно которой 10 — самый красивый человек. По этой шкале, лица большинства людей оцениваются от 4 до 6. Чтобы получить результат, необходимо измерить длину и ширину лица. Оптимальное значение равно 1,618. Это значит, что длина лица красивого человека должна быть на 1,618 больше его ширины. Позже вычисляются и другие соотношения: нижняя часть носа и нижняя часть подбородка. Наконец, для более точного результата проводятся тесты симметрии. По словам автора шкалы, доктора Шмида, помимо соответствия других характеристик, длина уха на идеальном лице должна быть равна длине носа.
  • Считается, что соотношение между средним пальцем и мизинцем тоже равно числу золотого сечения (ϕ).
  • Золотое сечение присутствует и в геометрии. С его учетом выполнены многие здания и произведения искусства. Яркий пример: древнегреческий Парфенон.
  • Еще один пример золотого сечения — пентаграмма.

Сравнение многозначных чисел

Существует несколько способов сравнения многозначных чисел. Рассмотрим три из них.

Способ 1.

Каждое следующее число при счете больше предыдущего. Используем эти знания при сравнении чисел.

Число 300.001 называем при счете после числа 300.000, значит, 300.001>300.000.

Используя первый способ, сравните числа:

40.000 * 40.002

304.501 * 304.500

790.500.000 * 790.500.005

Подумайте, какое число называем при счете раньше.

Проверьте, верно ли выполнили задание.

40.000 < 40.002

304.501 > 304.500

790.500.000 < 790.500.005

Способ 2.

Сравниваем числа по количеству цифр в их записи. Согласны, что любое четырехзначное число меньше пятизначного, например?

Используя второй способ, сравните числа:

56.121 * 567.121

890.766 * 89.766

1.227.150 * 11.227.150

Проверьте, верно ли выполнили задание.

56.121< 567.121 (5 и 6 цифр)

890.766 > 89.766 (6 и 5 цифр)

1.227.150 < 11.227.150 (7 и 8 цифр)

Запомни! Число больше, если в нем больше цифр.

Способ 3.

Что делать, если количество цифр в числах одинаковое? Будем сравнивать по разрядам. Начинаем с высшего разряда.

Используя третий способ, сравните числа:

45.600 * 43.560

901.430 * 901.330

55.123.000 * 56.123.000

∞. Бесконечность

Это число известно всем и каждому, оно часто используется для преувеличений — как какой-нибудь «многоллион». Однако это число намного сложнее, чем большинство может представить, и если вы могли представить числа, идущие до этого пункта, именно это число очень странное и противоречивое. Согласно правилам бесконечности, есть бесконечное число нечетных и четных чисел в бесконечности, однако только половина от всех чисел может быть четной. Бесконечность плюс один равна бесконечности, бесконечность минус один равна бесконечности, бесконечность плюс бесконечность равна бесконечности, деленная пополам — тоже бесконечность, бесконечность минус бесконечность — никто не знает, бесконечность, деленная на бесконечность, будет, скорее всего, 1.

Ученые полагают, что в известной вселенной около 10^80 субатомных частиц, но это только известная вселенная. Некоторые предполагают, что вселенная бесконечна. Если это так, то математически достоверно, что есть другая Земля где-то там, где каждый атом складывается таким же образом, как и мы, и наша Земля. Шанс того, что копия Земли существует, невероятно мал, но в бесконечной вселенной это не только может произойти, но и бесконечно много раз.

В бесконечность верят не все. Израильский профессор математики Дорон Зильбергер утверждает, что по его мнению, числа не будут продолжаться вечно, и найдется настолько большое число, что когда вы добавите к нему единицу, вы придете к нулю

И хотя это число едва ли когда будет обнаружено и едва ли кто сможет его вообразить, бесконечность является важной частью математической философии

Возможно ли представить и записать число за гранью понимания

Математики не смогут назвать вам точное количество цифр в числе Грэма, не говоря уже о том, чтобы досчитать до него. Известны лишь последние 50 цифр самого большого числа в мире — это …03222348723967018485186439059104575627262464195387.

А вот цифры, с которых начинается G64 неизвестны, и вряд ли когда-либо будут.

Давайте сравним трех монстров: гугол, гуголплекс и число Грэма.

Теперь представьте, что в какой-то момент вы берете одну песчинку, чтобы рассмотреть ее под мощным микроскопом. И видите, что на самом деле это не единственное зерно, а 10 миллиардов микроскопических зерен, а все вместе они размером с песчинку. Если бы это было так для каждой отдельной песчинки в этой гипотетической вселенной, то общее количество этих микроскопических зерен было бы гуголом.

Спор о нулях: девять или двенадцать?

Из-за путаницы о том сколько в числе нулей происходило немало казусных случаев и даже конфликтов. Например, в Соединенных Штатах Америки в девятнадцатого столетия миллиардом называли цифру 100 000 000. Поэтому миллиардерами называли людей еще за долго до того, как появился первый обладатель 1 000 000 000 долларов.

Похожая история происходила и с числом миллион. Слово «миллиард», как и «миллион», происходит от «тысяча». Дальше к нему добавляют итальянский увеличительный суффикс. Разночтение в понимании того сколько идет нулей в одном миллиарде связаны с разными системами наименования чисел. Их существует две:

  • длинная;
  • короткая.

В Англии применяли длинную шкалу, а США короткую. Согласно первой из них последующее число, которое идет после миллиона было больше предшествующего в 1 000 000 раз. Один миллиард согласно этой системе равен «миллиону миллионов». Поэтому цифра содержала в себе двенадцать нулей. Короткая система была основана на том, что каждое последующее число, которое идет после миллиона больше предшествующего в тысячу раз. В этой шкале миллиард именуют биллионом, но в нем привычные нам 9 нулей. Подобные разночтения вызывали немало споров и конфликтов в среде ученых и экономистов.

В 1974 в Англии стали использовать короткую систему. Но долгие годы английские ученые продолжали спорить о том сколько же нулей в миллиарде, и применяли старую шкалу. Лишь со временем произошел полный переход на новые правила. Теперь в большинстве стран мира принята короткая система, в которой после миллиарда идет триллион.

Алеф-ноль ℵ0

Алеф-ноль — это наименьшее бесконечное кардинальное число. Возможно, вы подумаете: как же так? Ведь бесконечность — это всего лишь понятие, а не множество бесконечных чисел. В конце концов, если и существует бесконечность, которая больше другой бесконечности, то первая — уже определенно не бесконечность.

Сейчас разберемся. Предположим, у нас есть базовое представление о том, что такое бесконечность (см. пункт 12). Алеф-ноль — это множество натуральных чисел (0, 1, 2, 3 и т. д.). Это понятие (или число) велико по размеру и, в общем-то, бесконечно.

Что, если мы пересчитаем все натуральные числа два или три раза? После завершения первого множества мы получим числа, выходящие за рамки натуральных чисел по порядку. Итак, нам понадобится порядок чисел или порядковый номер. Следующее число после Алеф-ноль — это омега (ω). Затем идет ω + 1. Эти два последних числа — не кардинальные числа, а порядковые (ординалы): то есть они показывают положение элементов относительно горизонтальной оси. График ниже — их упрощенное представление.

Каждое множество чисел может представлять набор множеств натуральных чисел с мощностью ℵ0. Если добавить к первому множеству единицу — это не изменит количество элементов (вы даже можете просто изменить порядок, и у вас все равно останется мощность Алеф-ноль).

Wikipedia

Это позволяет рассматривать их как порядковые величины (ординалы). Следовательно, первое порядковое трансфинитное число после набора — это то, что мы обсуждали выше — омега «ω». Интересно и то, что число ω + 1 необязательно больше ω — оно просто идет после него.

Да, возможно, это слишком для мгновенного понимания. Это то, о чем следует размышлять и к чему следует возвращаться. Поэтому ниже мы расписали все, что вам нужно знать:

  • Бесконечность и Алеф-ноль — две разные вещи. Первое — это просто идея крайнего предела, лежащая на числовой оси, а второе — размер множества (его мощность).
  • Кардинальное число — это мощность множества, его размер с точки зрения количества элементов (1, 2, 459, 1002 и т. п.). В то время как ординал или порядковое число — это порядковый тип множества (1-й, 2-й, 66-й и т. д.).
  • Подобно бесконечным кардиналам, существуют и бесконечные ординалы. И первое бесконечное (несчетное) порядковое число — это омега ω. Его мы обсуждали чуть выше.
  • Следуя этой логике, Алеф-один является мощностью омеги ω.

А Алеф-ноль — всего лишь первый кардинал из огромного множества других «Алефов».

Разряды чисел

От позиции, на которой стоит цифра в записи числа, зависит ее значение. Например:

1 123 содержит в себе: 3 единицы, 2 десятка, 1 сотню, 1 тысячу.

Можно сформулировать иначе и сказать, что в заданном числе 1 123 цифра 3 располагается в разряде единиц, 2 в разряде десятков, 1 в разряде сотен, а 1 служит значением разряда тысяч.

Проясним, что такое разряд в математике. Разряд — это позиция или место расположения цифры в записи натурального числа.

У каждого разряда есть свое название. Слева всегда живут старшие разряды, а справа — младшие. Чтобы быстрее запомнить, можно использовать таблицу.

Количество разрядов всегда соответствует количеству знаков в числе. В этой таблице есть названия всех разрядов для числа, которое состоит из 15 знаков. У следующих разрядов также есть названия, но они используются крайне редко.

Низший (младший) разряд многозначного натурального числа — разряд единиц.

Высший (старший) разряд многозначного натурального числа — разряд, соответствующий крайней левой цифре в заданном числе.

Вы наверняка заметили, что в учебниках часто ставят небольшие пробелы при записи многозначных чисел. Так делают, чтобы натуральные числа было удобно читать. А еще чтобы визуально разделить классы чисел.

Разрядные единицы обозначают так:

  • Единицы — единицами первого разряда (или простыми единицами) и пишут на первом месте справа.
  • Десятки — единицами второго разряда и записывают в числе на втором месте справа.
  • Сотни — единицами третьего разряда и записывают на третьем месте справа.
  • Единицы тысяч — единицами четвертого разряда и записывают на четвертом месте справа.
  • Десятки тысяч — единицами пятого разряда и записывают на пятом месте справа.
  • Сотни тысяч — единицами шестого разряда и записывают в числе на шестом месте справа и так далее.

Каждые три разряда, следующие друг за другом, составляют класс. Первые три разряда: единицы десятки и сотни — образуют класс единиц (первый класс). Следующие три разряда: единицы тысяч, десятки тысяч и сотни тысяч — образуют класс тысяч (второй класс). Третий класс будут составлять единицы, десятки и тысячи миллионов и так далее.

Чтобы легче понимать математику — записывайтесь на наши онлайн-курсы по математике!

Какое число является самым большим в мире в цифрах

Дети часто задают вопрос о том, какое число является самым большим. Почти все взрослые отвечают, что такого числа нет, не вдумываясь в суть вопроса.

На первый взгляд все просто: достаточно к названному «самому большому» числу добавить единицу, и оно уже не является таковым.

Ученые задались вопросом, как можно называть самое большое число и, соответственно, определить его. Для начала поговорим о названиях.

Названия для существующих чисел

Для удобства выделены две системы наименований: американская и английская. Также есть латинское название и русская приставка для определения числовой привязки до десяти.

Число Название (лат.) Приставка (рус.)
1 Unus Ан –
2 Duo Дуо –
3 Tres Три –
4 Quattuor Квадри –
5 Quinque Квинти –
6 Sex Сексти –
7 Septem Септи –
8 Octo Окти –
9 Novem Нони –
10 Decem Деци –

Американская система

С помощью этих приставок и формируется американская и английская системы. В американской системе сначала ставят латинское название числительного по порядку, после чего добавляют суффикс «–иллион». Слово миллион произошло от латинского mille – тысяча. Это исключение. Остальное проще: триллион, квадриллион, дециллион. Названия чисел, построенные таким способом, используют в:

  • Канаде;
  • США;
  • России;
  • Франции.

Количество нулей в числе определяется по формуле: 3*х +3, где х – латинское числительное.

Английская система

Английская система получила большее распространение по миру. Ее использую бывшие английские и испанские колонии, а также Великобритания и Испания. Названия в этом случае строятся следующим образом: к числителю из латинского прибавляют суффикс «-иллион».

Но следующим числом, в отличие от американской системы, становиться большее в 1000 раз. Его название строится по принципу: латинское числительное плюс суффикс «-иллиард». Таким образом, после триллиона идет триллиард, а после квадриллиона – квадриллиард.

Получается, что в обеих системах есть, например, квадриллион, но он означает разные числа.

Согласно этой системе, чтобы определить количество нулей в тех числах, которые оканчиваются на «–иллион», нужно использовать формулу 6*х+3, где х латинское числительное.

Соответственно, для «-иллиардов» используют формулу 6*х+6. Из английского способа давать названия в русский перешло только слово биллион. Также можно найти в русскоязычных ресурсах использование слова триллиард.

Это также исключение. Оно означает квадриллионт – 1000 триллионов.

Что следует за огромными числами

Для полного понимания следует перечислить названия известных уже чисел (порядковых), начиная с самого начала:

  • Единица;
  • Десять;
  • Сто;
  • Тысяча;
  • Миллион;
  • Миллиард;
  • Триллион;
  • Квадриллион;
  • Квинтиллион;
  • Секстиллион;
  • Септиллион;
  • Октиллион;
  • Нониллион;
  • Дециллион;
  • Вигинтиллион;
  • Центиллион;
  • Миллеиллион.

Последнее число и является самым большим числом с собственным названием. Все остальные – это составные слова, обозначающие числа. Объединение приставок позволяет дать имя еще сотням тысяч чисел:

  • Андецилион;
  • Дуодециллион;
  • Тредециллион;
  • Кваттордециллион;
  • Квиндециллион;
  • Сексдециллион;
  • Септемдециллион;
  • Октодециллион;
  • Новемдециллион и другие.

Как называются числа с нулями на конце

Смотреть что такое «Системы наименования чисел» в других словарях:

Число — У этого термина существуют и другие значения, см. Число (значения). Число основное понятие математики, используемое для количественной характеристики, сравнения и нумерации объектов. Возникнув ещё в первобытном обществе из потребностей… … Википедия

Число (матем.) — см. также: Число (лингвистика) Число абстракция, используемая для количественной характеристики объектов. Возникнув ещё в первобытном обществе из потребностей счёта, понятие числа изменялось и обогащалось и превратилось в важнейшее математическое … Википедия

Зиллион — (англ. zillion) общее название для очень больших чисел. Этот термин не имеет строгого математического определения. В 1996 году Конвей (англ. J. H. Conway) и Гай (англ. R. K. Guy) в своей книге англ. The Book of Numbers… … Википедия

Лимард — Миллиард (млрд) в европейской системе наименования чисел тысяча миллионов, число, изображаемое единицей с девятью нулями (1 000 000 000), 109. Приставки СИ: для миллиарда гига (109), для одной миллиардной нано (10−9). В американской системе… … Википедия

Млрд — Миллиард (млрд) в европейской системе наименования чисел тысяча миллионов, число, изображаемое единицей с девятью нулями (1 000 000 000), 109. Приставки СИ: для миллиарда гига (109), для одной миллиардной нано (10−9). В американской системе… … Википедия

Именные названия степеней тысячи — Возможно, эта статья содержит оригинальное исследование. Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление. Дополнительные сведения могут быть на странице обсуждения. (13 мая 2011) … Википедия

Дециллион — Именные названия степеней тысячи в порядке возрастания Название Значение Американская система Европейская система тысяча 10³ 10³ миллион 106 106 миллиард 109 109 биллион 109 1012 триллион 1012 … Википедия

Додециллион — Именные названия степеней тысячи в порядке возрастания Название Значение Американская система Европейская система тысяча 10³ 10³ миллион 106 106 миллиард 109 109 биллион 109 1012 триллион 1012 … Википедия

Квинтиллион — Именные названия степеней тысячи в порядке возрастания Название Значение Американская система Европейская система тысяча 10³ 10³ миллион 106 106 миллиард 109 109 биллион 109 1012 триллион 1012 … Википедия

Источник

Именные названия степеней тысячи.

Название числа

Значение числа

мириада или десять тысяч

10 18 тера

10 24 пета

Произношение больших чисел большего порядка зачастую отличается.

10 100 — гугол (число было придумано 9-летним племянником американского математика Э. Каснера)

  • 10 123 — квадрагинтиллион
  • 10 153 — квинквагинтиллион
  • 10 183 — сексагинтиллион
  • 10 213 — септуагинтиллион
  • 10 243 — октогинтиллион
  • 10 273 — нонагинтиллион
  • 10 303 — центиллион

Названия еще больших чисел получаем прямым или обратным порядком латинских числительных (правильные достоверно не известны):

  • 10 306 — анцентиллион или центуниллион
  • 10 309 — дуоцентиллион или центдуоллион
  • 10 312 — трецентиллион или центтриллион
  • 10 315 — кватторцентиллион или центквадриллион
  • 10 402 — третригинтацентиллион или центтретригинтиллион

Второй вариант больше соответствует построению чисел в латинском языке и не в таком случае не возникают двусмысленности (например, число трецентиллион по первому написанию является и 10 903 и 10 312 ), поэтому мы считаем второй вариант более правильным. Следующие числа:

  • 10 603 — дуцентиллион
  • 10 903 — трецентиллион
  • 10 1203 — квадрингентиллион
  • 10 1503 — квингентиллион
  • 10 1803 — сесцентиллион
  • 10 2103 — септингентиллион
  • 10 2403 — октингентиллион
  • 10 2703 — нонгентиллион
  • 10 3003 — миллиллион (или милиаиллион)
  • 10 6003 — дуомилиаллион
  • 10 9003 — тремиллиаллион
  • 10 15003 — квинквемилиаллион
  • 10 308760 — дуцентдуомилианонгентновемдециллион
  • 10 3000003 — милиамилиаиллион
  • 10 6000003 — дуомилиамилиаиллион
  • 10 10100 — гуголплекс

Свойства целых чисел

Таблица содержит основные свойства сложения и умножения для любых целых a, b и c:

Свойство

Сложение

Умножение

Замкнутость

a + b — целое

a × b — целое

Ассоциативность

a + (b + c) = (a + b) + c

a * (b * c) = (a * b) * c

Коммутативность

a + b = b + a

a * b = b * a

Существование 

нейтрального элемента

a + 0 = a

a * 1 = a

Существование 

противоположного элемента

a + (−a) = 0

a ≠ ±1 ⇒ 1/a не является целым

Дистрибутивность 

умножения относительно

сложения

a * (b + c) = (a * b) + (a * c)

Пару слов о делении. В стандартном виде невозможно разделить число на множестве целых чисел, но можно делить с остатком. Это правило можно сформулировать так:

Для всяких целых a и b (b ≠ 0), есть один набор целых чисел q и r. При этом:

a = bq + r, где a — делимое, b — делитель, q — частное, r — остаток,

0 ≤ r < |b|, где |b| — абсолютная величина (модуль) числа b.

Целых числа в описании изменения величины

Какие числа называют целыми мы уже знаем. Их удобно использовать, чтобы считать предметы или чтобы сказать, что чего-то стало больше или меньше. А теперь примерчик!

Вы участвуете в конкурсе в инстаграм: нужно написать 5 постов про свои самые заветные мечты. А пока вы это не сделали, можно сказать, что сейчас у вас -5 постов. То есть число 5 описывает сколько вы должны сделать постов, а знак «минус» говорит о том, что вы все еще не выполнили условия конкурса. Постов то нет

А если помимо 5 постов, нужно опубликовать еще 5 сторис — общий долг можно вычислить по правилу сложения отрицательных чисел:

-5 (постов, которых еще нет) + (-5 сториз, которых тоже еще нет) = -10 публикаций

Итого: чтобы участвовать в конкурсе, нужно сделать 10 публикаций в инстаграм.

Миллиард = биллион?

Такое слово, как биллион, применяется для обозначения миллиарда только в тех государствах, в которых за основу принята «короткая шкала». Это такие страны, как Российская Федерация, Соединенное Королевство Великобритании и Северной Ирландии, США, Канада, Греция и Турция. В других странах понятие биллион означает число 10 12 , то есть один и 12 нулей. В странах с «короткой шкалой», в том числе в России, эта цифра соответствует 1 триллиону.

Такая неразбериха появилась во Франции в то время, когда происходило становление такой науки, как алгебра. Изначально у миллиарда было 12 нулей. Однако все изменилось после появления основного пособия по арифметике (автор Траншан) в 1558 году), где миллиард – это уже число с 9 нулями (тысяча миллионов).

Несколько последующих столетий эти два понятия употреблялись наравне друг с другом. В середине 20 века, а именно в 1948 году, Франция перешла на длинную шкалу системы числовых наименований. В связи с этим, короткая шкала, некогда позаимствованная у французов, все же отличается от той, которой они пользуются сегодня.

Исторически сложилось так, что Соединенное Королевство использовало долгосрочный миллиард, но с 1974 года официальная статистика Великобритании использовала краткосрочную шкалу. С 1950-х годов краткосрочная шкала все чаще использовалась в области технической письменности и журналистики, несмотря на то, что по-прежнему сохранялась долгосрочная шкала.

Для удобства чтения и запоминания больших чисел цифры их разбивают на так называемые «классы»: справа отделяют три цифры (первый класс), затем еще три (второй класс) и т.д. Последний класс может иметь три, две и одну цифру. Между классами обычно оставляется небольшой пробел. Например, число 35461298 записывают так 35 461 298 . Здесь 298 — первый класс, 461 — второй класс, 35 — третий. Каждая из цифр класса называется его разрядом; счет разрядов также идет справа. Например, в первом классе 298 цифра 8 составляет первый разряд, 9 — второй, 2 — третий. В последнем классе может быть три, два разряда (в нашем примере: 5 — первый разряд, 3 — второй) или один.

Первый класс дает число единиц, второй — тысяч, третий — миллионов; сообразно с этим число 35 461 298 читается: тридцать пять миллионов четыреста шестьдесят одна тысяча двести девяносто восемь. Поэтому говорят, что единица второго класса есть тысяча; единица третьего класса — миллион.

Внесистемные числа

Стоит сказать и о том, что, помимо системных, существуют также и внесистемные числа. Может, среди них затерялось самое большое число? Стоит в этом разобраться.

  1. Гугол. Это число десять в сотой степени, т. е. единица, за которой следует сто нулей (10100). О данном числе впервые было сказано в далеком 1938 году ученым Эдвардом Каснером. Весьма интересный факт: всемирная поисковая система «Гугл» названа в честь довольно-таки большого на то время числа – гугол. А название ему придумал малолетний племянник Каснера.
  2. Асанкхейя. Это весьма интересное название, которое с санскрита переводится как «неисчислимый». Числовое значение ее – единица со 140 нулями – 10140. Интересным окажется следующий факт: это было известно людям еще в 100 году до н. э., о чем говорит запись в Джайна-сутре, известном буддийском трактате. Данное число считалось особенным, ведь было мнение, что столько же нужно космических циклов, чтобы достичь нирваны. Также на то время это число считалось самым большим.
  3. Гуголплекс. Это число придумано все тем же Эдвардом Каснером и его вышеупомянутым племянником. Числовое его обозначение – десять в десятой степени, которая, в свою очередь, состоит в сотой степени (т. е. десять в степени гуголплекс). Также ученый сказал, что таким образом можно получить настолько большое число, насколько хочется: гуголтетраплекс, гуголгексаплекс, гуголоктаплекс, гуголдекаплекс и т. д.
  4. Число Грэма – G. Это самое большое число, признано таковым в недалеком 1980 году Книгой рекордов Гиннеса. Оно существенно больше, нежели гуголплекс и его производные. А ученые и вовсе говорили о том, что вся Вселенная не в состоянии в себя вместить всю десятичную запись числа Грэма.
  5. Число Мозера, число Скьюза. Эти числа также считаются одними из самых больших и применяются они чаще всего при решении различных гипотез и теорем. А так как эти числа невозможно записать общепринятыми всеми законами, каждый ученый делает это по-своему.

Определение целых чисел

Что такое целое число — это натуральное число, а также противоположное ему число и нуль. Примеры целых чисел: -7, 222, 0, 569321, -12345 и др.

Что важно знать о целых числах:

  • Сумма, разность и произведение целых чисел в результате дают целые числа.
  • Не существует самого большого и самого маленького целого числа. Этот ряд бесконечен. Наибольшего и наименьшего целых чисел — не бывает.
  • Обыкновенные и десятичные дроби нельзя назвать целыми числами. Но иногда в задачах можно встретить целые числа, у которых дробная часть равна нулю и при этом нет долей.

Целые числа на числовой оси выглядят так:

На координатной прямой начало отсчета всегда начинается с точки 0. Слева находятся все отрицательные целые числа, справа — положительные. Каждой точке соответствует единственное целое число.

В любую точку прямой, координатой которой является целое число, можно попасть, если отложить от начала координат данное количество единичных отрезков.

Натуральные числа — это целые, положительные числа, которые мы используем для подсчета. Вот они: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 + ∞.

Целые числа — это расширенное множество натуральных чисел, которое можно получить, если добавить к ним нуль и отрицательные числа. Множество целых чисел обозначают Z.

Выглядит эти ребята вот так:

Последовательность целых чисел можно записать так:

∞ + … -4, -3, -2, -1, 0, 1, 2, 3, 4 … + ∞

Количественный смысл натуральных чисел

Натуральные числа несут в себе количественный смысл, то есть выступают в качестве инструмента для нумерации.

Представим, что перед нами банан . Мы можем записать, что видим 1 банан. При этом натуральное число 1 читается как «один» или «единица».

Но термин «единица» имеет еще одно значение: то, что можно рассмотреть, как единое целое. Элемент множества можно обозначить единицей. Например, любое дерево из множества деревьев — единица, любой листок из множества листков — единица.

Представим, что перед нами 2 банана . Натуральное число 2 читается как «два». Далее, по аналогии:

3 предмета («три»)
4 предмета («четыре»)
5 предметов («пять»)
6 предметов («шесть»)
7 предметов («семь»)
8 предметов («восемь»)
9 предметов («девять»)

Основная функция натурального числа — указать количество предметов.

Если запись числа совпадает с цифрой 0, то его называют «ноль». Напомним, что ноль — не натуральное число, но он может обозначать отсутствие. Ноль предметов значит — ни одного.