Человек генно-модифицированный / homo genere mutatio

Содержание

Оплата

Есть ли какие-либо скидки, и как их получить?

Да, установлены некоторые виды и размеры скидок на услуги по генетической лабораторной диагностике (определение генов, ответственных за различные индивидуальные особенности человека). Более подробно о действующих скидках и условиях их получения .

Каким способом можно оплатить услуги генетического исследования?

Оплатить услуги генетического исследования после заключения договора можно тремя способами:

  • Наличными денежными средствами Республики Беларусь образца 2009 года (BYN) в бухгалтерии (451 кабинет, 4 этаж);
  • С помощью пластиковой банковской карточки или карты рассрочки «Халва+» в кабинете 131 на 2 этаже;
  • Банковским переводом на расчётный счёт института – данный способ оплаты оговаривается отдельно.

Можно ли произвести оплату по частям (авансом)?

Да, можно. Первый платёж должен составлять не менее 60% от суммы договора. Второй платёж до того, как генетический паспорт будет готов и должен полностью погасить задолженность.

Где и когда можно произвести доплату?

Доплаты принимаются в в первой и второй половине дня за исключением пятниц и последних дней месяца – в эти дни оплата принимается только в первой половине дня до 12.45. Предварительная запись не требуется.

А что может пойти не так?

Современное редактирование генома довольно точное, но не идеальное. Процедура похожа на прицельную стрельбу – надо попасть по нужным клеткам, а по остальным – промахнуться. Даже если Crispr попадает куда нужно, изменения могут отличаться от клетки к клетке, например, в одной нужно исправить две копии мутировавшего гена, а в другой – только одну

Для некоторых генетических заболеваний это не столь важно, но становится проблемой, если заболевание возникает из-за единственного мутировавшего гена. Другая трудность возникает, когда изменения были произведены в неправильном участке генома

Таких «выстрелов не по мишени» может быть сотни, и они могут быть опасны, если разрушают здоровые гены или критически важные регуляторы ДНК.

Как передаются наследственные заболевания?

Организм человека состоит из триллионов клеток. Каждая клетка имеет ядро, которое содержит хромосомы. Каждая хромосома состоит из плотно свернутых нитей дезоксирибонуклеиновой кислоты (ДНК).

Гены — это инструкции по сборке белков в нашем организме, которые определяют специфические черты каждого человека, например, цвет глаз или волос. Большинство клеток в организме обычно содержат 46 хромосом, организованных в 23 пары. В каждой из этих 23 пар есть одна унаследованная хромосома от отца и одна — от матери. Из 23 пар 22 пары одинаковые у женских и мужских организмов, а одна оставшаяся определяет, являетесь вы мужчиной (XY) или женщиной (XX).

Мутации, из-за которых возникают наследственные заболевания, могут иметь доминантный или рецессивный характер наследования.

Доминантное наследование означает, что только одна копия гена — от матери или отца — должна иметь мутацию (или патогенный вариант гена) для проявления признака или заболевания. А при рецессивном типе человек наследует две измененные копии одного и того же гена.

Аутосомно-доминантный паттерн наследования

При аутосомно-доминантном наследовании заболеваний генетически обусловленная болезнь проявляется в том случае, если у человека есть хотя бы один мутированный ген, и этот ген не расположен на половых (Х и Y) хромосомах.

Болезнь Хантингтона и синдром Марфана — два примера аутосомно-доминантных болезней. Мутации в генах BRCA1 и BRCA2, которые также связаны с раком молочной железы, передаются по этой схеме.

Аутосомно-рецессивный паттерн наследования

При аутосомно-рецессивном наследовании мутируют обе копии генов. Чтобы унаследовать аутосомно — рецессивное заболевание, такое как муковисцидоз, спинальная мышечная атрофия, или фенилкетонурия (ФКУ), оба родителя должны быть носителями. Ребенок наследует две копии дефектного гена — по одной от каждого родителя. Например, люди, имеющие одну копию гена с мутацией, а вторую — без мутации, называются носителями, потому что сами они здоровы.

Х-сцепленное рецессивное наследование

В Х-сцепленном рецессивном наследовании мутированный ген находится на Х-хромосоме. Болезнь проявляется только в случае, если другой Х-хромосомы с нормальной копией того же гена у человека нет.

Мышечная дистрофия Дюшенна, некоторые виды дальтонизма и гемофилия А — примеры рецессивных заболеваний, связанных с X-хромосомой. Мужчина с рецессивным заболеванием, связанным с X-хромосомой, передаст свою нетронутую Y-хромосому сыновьям, и ни один из них не пострадает. Если он передаст свою Х-хромосому (с дефектным геном) своим дочерям, то все они будут носителями болезни. У его дочерей может не быть симптомов или только легкие признаки заболевания, но они могут передать мутированный ген своим детям.

Женщины-носители рецессивного заболевания, связанного с X-хромосомой, часто имеют лёгкие признаки заболевания или вообще не имеют симптомов. Это связано с тем, что у женщин-носителей есть одна нормальная копия гена и одна мутированная копия. Нормальная копия обычно компенсирует дефектную копию в женском организме, в отличие от мужчин, у которых только одна X-хромосома.

Женщины, имеющие только один патологический ген, передают заболевание в среднем половине своих детей вне зависимости от пола. Женщины же, имеющие два патологических гена, передают заболевание всем своим детям. К таким заболеваниям относятся гемофилия А и дальтонизм.

Если вы знаете или предполагаете, что у вас или вашего партнера в семейной истории есть какое-либо генетическое заболевание, вы можете определить это с помощью Генетического теста Атлас. Генетическое консультирование поможет вам узнать о методах лечения, профилактических мерах и репродуктивных возможностях.

Исследование

Кто может пройти генетическое исследование?

Исследование может пройти совершенно любой человек любого возраста, пола и национальности – нет никаких ограничений. Для детей, например, минимальный возраст определяется родителями – если ребёнок сможет полежать спокойно пару минут, пока будет , значит его можно приводить.

C комплексами генов, которые предоставляет для исследования лаборатория, Вы можете ознакомиться на странице сайта «Цены ». Там же указана стоимость.

В заказанное исследование входит стоимость за:

  • Регистрацию, сопровождение, забор биологического материала (буккального эпителия) человека;
  • Выделение дезоксирибонуклеиновой кислоты (ДНК) из исследуемого образца;
  • Проведение молекулярно-генетического анализа;
  • Разработку генетического паспорта.

Нужна ли подготовка перед сдачей материала на исследование?

Нет, не нужна. Перед сдачей материала на исследование нет необходимости соблюдать диету или выполнять какие-либо другие специальные действия. Приём медицинских препаратов, алкоголя и др. также не скажется на результатах генетического исследования.

Как и какой и какой биологический материал забирается для исследования?

Для исследования забирается буккальный эпителий (эпителий внутренней части щёк) специальной ватной палочкой. Забор проводится клиентом лично в присутствии врача лабораторной диагностики. Кровь не забирается.

Можно ли выслать биологический материал на исследование почтой?

Да, это возможно. Детальная инструкция доступна на странице сайта Запись на приём на вкладке «Без посещения (удалённо)». Результаты исследования можно будет получить бумажной почтой прямо домой. В случае, если из присланного образца не удастся выделить ДНК, потребуется возместить стоимость затраченных реактивов.

При себе необходимо иметь паспорт, а также . У несовершеннолетних должен быть сопровождающий.

Хромосома: определение и описание

Считается, что хромосомы это нуклеотидные биомеханизмы, которые находятся в ядре клетки. Эти биомеханизмы являются носителями и передатчиками наследственной информации, и в свою очередь содержат в себе двойную спираль дезоксирибонуклеиновой кислоты.

Чем отличаются хромосомы друг от друга

На примере Х хромосомы, цепи нуклеотидов могут пересекаться внутри хромосомы различно:

  1.  В перекрестии хромосомы, пересекаясь точно посередине друг друга.
  2.  Там же, но пересекаясь не точно.

Во втором случае одни концы получившегося перекрестия будут длиннее, а другие короче. Называют такие концы длинным и коротким плечом хромосомы. Отсюда и форма Y хромосомы, у которой ярко выражены длинные плечи, а короткие настолько не велики, что схематически не указываются.

Науке известных хромосомы трёх основных форм:

  •  Х хромосома, которая встречается у женщин и у мужчин.
  •  Y хромосома, встречающаяся только у мужчин.
  •  В хромосома изредка встречается у растений, и считается отмирающей, поскольку редко наследуется. Обычно её наличие в растении связывают с его слабостью и болезненностью.

Всего в клетке человеческого организма находится 46 парных хромосом: 22 пары «обычных» и одна пара половых (ХХ у женщин и XY у мужчин). Интересный факт – если добавить или отнять всего одну пару хромосом, человек может стать помидором или орангутангом.

От кого родился, тем и заразился

Нидерландские ученые выяснили: мутации, которые защитили древних людей от смертельных инфекций, подарили современному человечеству целую россыпь аутоиммунных заболеваний. Причем набор зависит от того, где обитали наши предки и куда мигрировали в последние несколько тысяч лет.

Так, люди африканского и европейского происхождения имеют иммунитет к патогенам, с которыми контактировали доисторические жители Африки и Евразии. После каждой эпидемии, разразившейся в конкретном регионе, выжившие становились менее восприимчивыми к определенной инфекции — развивалась устойчивая мутация ДНК. Она передавалась потомкам и позже могла спровоцировать новые аутоиммунные заболевания — болезнь Крона, волчанку или воспаление кишечника.

Правда, в прошлом эти болезни практически не замечали — люди жили значительно меньше и реже достигали возраста, когда проявляются многие аутоиммунные нарушения. Поэтому, как отмечают авторы работы, польза от приобретенных мутаций перевешивала, они становились агентами естественного отбора. Теперь же продолжительность жизни увеличилась, а человечество столкнулось с серьезными последствиями инфекций, перенесенных предками.

В частности, сегодня многие африканцы зрелого возраста подвержены сердечно-сосудистым заболеваниям. По мнению исследователей, это плата за защиту от малярии. Комар Plasmodium sp. заражал африканское население миллионы лет, и в результате эволюционного отбора сформировалась популяция, устойчивая к малярийным плазмодиям. Но постоянное воспаление, связанное с противостоянием этим микроорганизмам, приводит к развитию атеросклероза — а он, в свою очередь, провоцирует инфаркт или инсульт.

Похожим образом люди, в чьей ДНК присутствуют неандертальские гены, защищены от ВИЧ первого типа и стафилококковых инфекций, но чаще других склонны к развитию аллергий, астмы и сенной лихорадки.

Люди, жившие в разных частях Земли, формировали иммунный ответ к различающимся наборам патогенов. В результате среди их потомков чаще встречаются носители мутаций, которые защищают от инфекционных болезней, характерных для определенного региона. Однако именно эти мутации в преклонном возрасте могут спровоцировать развитие аутоиммунных заболеваний

Что такое мейоз

Второй способ деления эукариотической клетки — мейоз. Во время такого процесса деления клетки получаются дочерние клетки, которые называются гаметы. У мужчин это сперматозоид, а у женщин яйцеклетка. Гаметы получают только половину генетической информации родительской клетки. Число хромосом уменьшается в два раза. 

 Схема мейоза‍

Затем гаметы могут объединяться, образуя новую клетку, сочетающую генетическую информацию обеих клеток-родителей — зиготу. Процесс слияния половых клеток называется оплодотворением. Если зигота совершит цепь митозов, сформируется новый организм. 

По промокоду BIO92021 вы получите бесплатный доступ к курсу биологии 9 класса, по промокоду BIO10112021 бесплатный доступ к курсу биологии 10 класса. Выберите нужный раздел и изучайте биологию вместе с домашней онлайн-школой «Фоксфорда»!

Каждая гамета человека содержит 23 хромосомы — гаплоидный набор (n). Когда гаметы объединяются, получается зигота с 46 хромосомами — диплоидный набор (2n). 

Во время мейоза одна клетка с 46 хромосомами делится дважды. Первое деление называется мейоз I, второе деление называется мейоз II. Интерфаза между двумя этапами деления мейоза настолько кратковременна, что практически незаметна, и в ней не происходит удвоение ДНК. В результате образуются четыре дочерние клетки, каждая с 23 хромосомами. 

Мейоз I подразделяется на четыре фазы, аналогичные фазам митоза:

  • Профаза I (2n4c) — занимает 90% времени. Происходит скручивание молекул ДНК и образование хромосом. Каждая хромосома состоит из двух гомологичных хроматид — 2n4c. Происходит конъюгация хромосом: гомологичные (парные) хромосомы сближаются и скручиваются, образуя структуры из двух соединённых хромосом — такие структуры называют тетрады, или биваленты. Затем гомологичные хромосомы начинают расходиться. При этом происходит кроссинговер — обмен участками между гомологичными хромосомами. В результате этого процесса создаются новые комбинации генов в потомстве. Растворяется ядерная оболочка. Разрушаются ядрышки. Формируется веретено деления.
  • ‍Метафаза I (2n4c) — биваленты выстраиваются на экваторе веретена деления, при этом ориентация центромер к полюсам абсолютно случайная.
  • Анафаза I (хромосомный набор к концу анафазы: у полюсов — 1n2c, в клетке — 2n4c) — гомологичные хромосомы отходят к разным полюсам, при этом сестринские хроматиды всё ещё соединены центромерой. За счёт случайной ориентации центромер распределение хромосом к полюсам также случайно, так как нити веретена прикрепляются произвольно. 
  • Телофаза I (1n2c) — происходит деспирализация хромосом. Если интерфаза между делениями длительна, может образоваться новая ядерная оболочка.

Мейоз I

Мейоз II подразделяется на четыре такие же фазы: 

  • Профаза II (1n2c) — восстанавливается новое веретено деления, ядерная мембрана растворяется, если образовывалась в телофазе I.
  • Метафаза II (1n2c) — хромосомы выстраиваются в экваториальной части веретена, а нити веретена прикрепляются к центромерам.
  • Анафаза II (хромосомный набор у каждого полюса — 1n1c, в клетке — 2n2c) — центромеры расщепляются, двухроматидные хромосомы разделяются, и теперь к каждому полюсу движется однохроматидная хромосома. 
  • Телофаза II (1n1c) — происходит деспирализация хромосом, формирование ядерных оболочек и разделение цитоплазмы; в результате двух делений из диплоидной материнской клетки получается четыре гаплоидных дочерних клетки. 

Мейоз II

Биологическое значение мейоза — образование гаплоидных клеток, отличающихся генетически друг от друга: половых клеток (гамет) у животных  и спор у растений. 

Генетический паспорт

Что такое генетический паспорт?

Генетический паспорт – это документ, который содержит в себе уникальную информацию о части генетического кода человека. Врачи используют эту информацию для коррекции неблагоприятных эффектов генов, например, при привычном невынашивании беременности, сердечно-сосудистых заболеваниях, диабете, ожирении, остеопорозе, а также когда нужно точно знать, какую назначить дозировку кроворазжижающих препаратов, таких как Клопидогрел и Варфарин. Спортивный тренер вместе с врачом (основываясь на информации в генетическом паспорте) может спланировать тренировки для достижения наилучших результатов, а родители определить, сможет ли их ребёнок достичь высоких спортивных результатов в выбранном виде спорта) или же стоит выбрать что-то другое. Вместе с тем, генетический паспорт будет полезен не только людям с проблемами со здоровьем, людям планирующим операцию или спортсменам, тренерам, будущим спортсменам и спортсменкам, но и абсолютно любому человеку, который больше хочет узнать о себе – основе его здоровья и талантов. Генетический паспорт – ключ к персонализации медицины, индивидуальному подходу к каждому отдельному человеку. Это документ на всю жизнь, который в современном обществе должен быть у каждого.

Как выглядит генетический паспорт?

Генетический паспорт представляет из себя небольшую книжечку формата A5. На первой странице генетического паспорта представлены реквизиты лаборатории, которая провела исследования, информация о сертификатах соответствия и лицензии Минздрава Республики Беларусь (). Чуть ниже находится номер генетического паспорта и ФИО человека, которому он принадлежит.

Информация о генетических особенностях представлена в виде таблицы, где в первом столбце порядковый номер, во втором – аббревиатура и название гена, исследуемый вариант гена; в третьем столбце описаны функции гена и выделена полужирным шрифтом важная информация. В последнем столбце представлены результаты тестирования – приведены буквенные варианты генов. На последней странице генетического паспорт расположены выводы, сделанные на основании анализа данного паспорта. Также прилагается пояснительная записка 

Титульный лист генетического паспорта

Содержимое генетического паспорта

Заключение

Что такое генетический код?

На каком «языке» в ДНК зашифровано строение белков? Белки живых существ сложены из 20–22 «кирпичиков» – аминокислот. Повторяясь и комбинируясь, они и образуют миллиарды вариантов. Значит, в ДНК должны быть некие «значки», которые будут соответствовать каждой из этих аминокислот. Такие «значки» есть. Это особые вещества – азотистые основания. В молекулу ДНК входит четыре их вида: аденин (А), тимин (Т), гуанин (Г) и цитозин (Ц). Комбинации этих «букв» и образуют генетический код – систему записи в ДНК информации о порядке аминокислот в молекуле белка.

У генетического кода несколько важных свойств:

– «трёхбуквенность»;

– непрерывность;

– неперекрываемость;

– однозначность;

– универсальность.

Почему код «трёхбуквенный»? Потому что если брать только две «буквы», то из них можно составить лишь 16 «слов» (АТ, ТА, ГА, АГ и т.д.). А аминокислот-то 20! Из троек же можно построить 64 сочетания.

Каждой аминокислоте соответствует своя тройка. Например, ААЦ – аминокислоте лейцину, ЦАТ – валину, АТА – тирозину. Вдоль нити ДНК выстроена запись из коротких «слов». Например: ААЦЦАТАТААТАААЦ. Эта «абракадабра» значит, что в каком-то белке аминокислоты должны стоять так: лейцин–валин–тирозин–тирозин–лейцин. Есть ещё и тройки «букв», которые показывают, с какого места начать и где закончить «чтение».

«Слова» записаны непрерывно, без пробелов. Это позволяет втиснуть больше информации, не увеличивая размер гена. Да и считывать сплошную строку не так трудно. Вам ведь понятна надпись: ДЫМШЁЛТРИДНЯ? (Кстати, ещё лет четыреста назад на Руси так и писали – не разделяя слов).

Универсальность кода означает, что он един для всех существ Земли. У ромашки, тигра, человека и вируса гриппа тройка ААЦ означает лейцин, ЦАТ – валин и т. д. Исключения единичны. Это даёт зелёный свет генетической инженерии: гены одних организмов вполне могут работать, попав в другие.
Кстати, о зелёном свете. У одной из медуз есть белок, который излучает его во мраке океанских глубин. Южнокорейские биологи пересадили ген этого белка… кошкам. На новом месте он прижился, передался котятам по наследству, а главное – заработал! Интересно, труднее ли стало светящимся кошкам ловить мышей?

Редактирование обязательно делать в самом организме?

Нет. Во время одного из самых первых испытаний редактора генома учёные забирали клетки из крови пациента, выполняли необходимые генетические корректировки и вводили исправленные клетки обратно. Такой метод выглядит многообещающим для лечения для людей, живущих с ВИЧ. Когда вирус попадает в организм, он инфицирует и убивает иммунные клетки. Но чтобы инфицировать иммунную клетку, ВИЧ сначала должен прицепиться к определённым белкам на её поверхности. Учёные выделили иммунные клетки из крови пациента и использовали редактор генома, чтобы вырезать ту ДНК, которая нужна клеткам для образования этих поверхностных белков. Без них ВИЧ не может получить доступ к клеткам.

Подобный способ может использоваться для борьбы с некоторыми типами рака: иммунные клетки выделяются из крови пациента и редактируются так, что они больше не могут синтезировать поверхностные белки, к которым цепляются раковые клетки. Отредактировав иммунные клетки и сделав из них «убийц рака», учёные размножают их и вводят обратно в организм пациента. Прелесть модифицирования клеток вне организма в том, что всё можно перепроверить до того, как вводить обратно, чтобы убедиться, что процесс редактирования проведён верно.

В каких ещё сферах применяется редактирование генома?

Агроиндустрия совершила большой скачок с помощью редактирования генома по целому ряду причин. Эта процедура быстрее, дешевле и более точная по сравнению с традиционной генетической модификацией, но помимо этого она позволяет производителям улучшать урожай без добавления генов других организмов – это как краеугольный камень всех споров вокруг ГМО в некоторых странах. С помощью редактора генома исследователи вырастили томаты без семян, пшеницу без глютена и грибы, которые не коричневеют со временем.

Некоторые отрасли медицины также воспользовались потенциалом новой технологии. Компании, работающие над производством антибиотиков нового поколения, разработали вирусы, которые сами по себе безопасны, но умеют находить и атаковать специфичные, вызывающие опасные инфекции штаммы бактерий. Также учёные используют редактор генома, чтобы обезопасить пересадку органов свиньи человеку. Помимо этого, редактирование генома повлияло на фундаментальные исследования, позволив учёным более точно понимать, как работают те или иные гены.

Применение генной инженерии в промышленности

Более того, можно смело говорить о том, что генное модифицирование уже применяется на практике для достижения определенных результатов. Я говорю о генно-модифицированных организмах — ГМО.

Самым простым примером, как для понимания преимуществ метода, так и для самих генетиков является создание модифицированных кисломолочных бактерий. Дело в том, что когда на производстве вирусы бактериофаги попадают в закваску, они уничтожают культуру полезных микроорганизмов. В итоге это приводит к тому, что партия оказывается испорченной, а производитель несет огромные убытки. Именно поэтому устойчивые к бактериофагам микроорганизмы решают массу проблем.

Если бактериофаги попадают на производство, пропадают просто огромные объемы продукции.

Изменение ДНК человека

Первые клинические испытания методов генной терапии были предприняты 22 мая 1989 года с целью генетического маркирования опухоль-инфильтрующих лимфоцитов в случае прогрессирующей меланомы.

14 сентября 1990 года в Бетесде (США) четырехлетней девочке, страдающей наследственным иммунодефицитом, обусловленным мутацией в гене аденозиндезаминазы (АDA), были пересажены ее собственные лимфоциты.

Работающая копия гена ADA была введена в клетки крови с помощью модифицированного вируса, в результате чего клетки получили возможность самостоятельно производить необходимый белок. Через шесть месяцев количество белых клеток в организме девочки поднялось до нормального уровня.

После этого область генной терапии получила толчок к дальнейшему развитию. С 1990-х годов сотни лабораторий ведут исследования по использованию генной терапии для лечения различных заболеваний. Уже сегодня с помощью генной терапии можно лечить диабет, анемию и некоторые виды онкологии.

Генная терапия

Генная терапия — введение, удаление или изменение генетического материала, в частности ДНК или РНК, в клетке пациента для лечения определенного заболевания.

Существует три основных стратегии использования генной терапии:

  1. Замена мутировавшего гена, вызывающего заболевание, здоровой копией.
  2. Инактивация или «выбивание» мутировавших генов, которые функционируют неправильно.
  3. Введение нового гена в организм, помогающего бороться с болезнью.

Наиболее часто применяемый метод включает вставку «терапевтического» гена для замены «ненормального» или «вызывающего болезнь».

В 2015 году впервые была проведена процедура изменения ДНК человека с целью продления молодости клеток, когда американке Элизабет Пэрриш 44 лет ввели в организм препарат, влияющий на ДНК, а в 2018 году китайский ученый Хэ Цзянькуй заявил, что с его помощью у двух детей-близнецов якобы изменены гены для выработки у них иммунитета к вирусу ВИЧ, носителем которого являлся их отец.

Почему в Китае популярны детские ДНК-тесты для определения вундеркиндов

Все это, с одной стороны, выглядит грандиозно и обнадеживает, но с другой, — вызывает опасения, ведь генетические манипуляции, теоретически, возможно использовать не только в благих и мирных целях.

После эксперимента с ДНК близнецов в Китае, ЮНЕСКО выступила с инициативой о запрете изменения генов у новорожденных до того момента, пока достоверно не будет доказана безопасность таких манипуляций.

Виды наследственных заболеваний

Наследственные заболевания разделяются на хромосомные, генные и митохондриальные.

Хромосомные заболевания

В настоящее время описано около 1000 форм хромосомных заболеваний. Хромосомные заболевания возникают в результате изменения числа или структуры хромосом. Они характеризуются общими признаками: маленькая масса и длина тела при рождении, отставание в умственном и физическом развитии, задержка и аномалии полового развития и прочее.

Хромосомные заболевания наследуются редко. И более чем в 95% случаев риск повторного рождения в семье ребенка с хромосомной патологией не превышает общепопуляционного уровня. Хромосомные заболевания с аномалиями числа хромосом включают: синдром Патау, синдром Эдвардса, синдром трисомии хромосомы 8. А хромосомные заболевания с аномалиями структуры хромосом — синдром Ди Джорджи, синдром Вольфа-Хиршхорна, синдром «кошачьего крика», синдром Альфи, синдром Орбели.

Моногенные заболевания

Моногенные заболевания возникают в результате повреждения ДНК на уровне гена. Количество моногенных заболеваний по некоторым оценкам достигает 5000.

Среди признаков моногенных болезней можно выделить: различные формы умственной отсталости, дефекты органов слуха, зрения, скелетные дисплазии, болезни нервной, эндокринной, иммунной и других систем. К числу наиболее известных моногенных болезней относятся муковисцидоз, гемофилия А и В, болезнь Гоше, миодистрофия Дюшенна/Беккера, спинальная мышечная атрофия, дальтонизм.

Выявить тяжелые моногенные заболевания можно с помощью пренатальной диагностики, а также, определив наличие мутаций у родителей с помощью генетического теста.

Интереснее всего мне было узнать об особенностях метаболизма. Именно поэтому я выбрала Атлас: только тут есть достаточно объемный раздел на эту тему. Например, всю жизнь я борюсь с весом, мигренью, болями в шее и спине, анемией.

Митохондриальные заболевания

Митохондриальные заболевания обусловлены генетическими, структурными, биохимическими дефектами в функционировании митохондрий, которые приводят к нарушению тканевого дыхания.

Митохондрии содержат свою собственную ДНК. А болезни, вызванные мутациями в митохондриальной ДНК, наследуются исключительно по материнской линии. Если именно таким образом было унаследовано митохондриальное заболевание, существует 100% вероятность того, что каждый ребенок в семье его унаследует.

Симптомы могут включать в себя: нарушение роста, слабость мышц, аутизм, ментальные расстройства, проблемы с дыханием, слухом и зрением. Примеры митохондриальных заболеваний: синдром Лея, синдром Вольфа-Паркинсона-Уайта, наследственная оптическая нейропатия Лебера и другие.

Полигенные или мультифакториальные заболевания

Существуют также болезни с наследственной предрасположенностью, которые называют мультифакториальными или полигенными заболеваниями.

Мультифакториальные заболевания обусловлены наследственными факторами риска, и в значительной степени — неблагоприятным воздействием среды. К мультифакториальным заболеваниям относятся большинство хронических заболеваний, включая сердечно-сосудистые, эндокринные, иммунные, нервно-психические, онкологические и др. Например, бронхиальная астма, сахарный диабет, ревматоидный артрит, гипертоническая болезнь сердца и т.д.

Приведёт ли это всё к «редактированию» будущих детей?

Огромные усилия в медицине направлены на то, чтобы исправить дефектные гены у детей и взрослых. Но некоторые исследования показали, что есть возможность редактировать гены у эмбрионов. В 2017 году учёные, созванные Национальной Академией Наук и Национальной Академией Медицины США, сдержанно поддержали редактирование генома у человеческих эмбрионов для предотвращения самых серьёзных заболеваний, но только один такой опыт оказался безопасным.

Любые изменения на эмбриональной стадии повлияют на все клетки человека и будут переданы его детям, поэтому очень важно избегать вредоносных ошибок и побочных эффектов. Проектирование человеческих эмбрионов также поднимает вопрос непростой перспективы «дизайна» детей, когда эмбрионы редактируются больше по социальным, чем по медицинским причинам; например, чтобы сделать человека выше или умнее

Однако такие черты могут контролироваться тысячами генов, большинство из которых ещё неизвестны. Поэтому на данный момент перспектива редактирования генома будущего потомства весьма отдалённая.

В чем смысл?

Энтузиазм вокруг темы редактирования генома объясняется возможностью лечить или предотвращать заболевания. Существуют тысячи генетических нарушений, которые передаются от поколения к поколению; многие из них – серьёзные и разрушительные. И они не редки: один ребёнок из двадцати пяти рождается с генетическим заболеванием. Среди самых распространённых – муковисцидоз (заболевание, которое характеризуется поражением желез внешней секреции – прим.), серповидноклеточная анемия (изменение строения белка гемоглобина, ведущее к тяжёлой форме анемии – прим.) и мышечная дистрофия.

Редактирование генома вселяет надежду на то, что эти болезни могут быть побеждены путём «переписывания» повреждённых генов в клетках пациента. Однако починка дефектных генов  – это ещё не все возможности; уже есть опыт модифицирования иммунных клеток человека для борьбы с раком или для повышения их устойчивости к ВИЧ-инфекции. Также возможно исправление дефектных генов у человеческого эмбриона – таким образом можно предотвратить наследование серьёзных заболеваний. Но эта технология неоднозначна, так как генетические изменения могут распространиться на сперму или яйцеклетки пациента, то есть все внесённые генетические корректировки и любые побочные эффекты могут быть переданы следующим поколениям.