Процесс роста мышц. как увеличить синтез белка

Обмен белков в организме

Обмен белков в организме значительно сложнее, чем метаболизм липидов или углеводов. Жирные кислоты попадают в клетки почти в исходном виде, а углеводы – служат источником энергии. При этом основной строитель мышц претерпевает немало изменений в организме. На отдельных этапах белок преобразуется в углеводы. Как следствие, вырабатывается энергия.

Существует несколько этапов белкового обмена, для каждого из которых характерны определенные особенности:

  1. Попадание белков в организм. Под действием слюны происходит расщепление связей гликогена. Как следствие, формируется глюкоза, доступная для усвоения. Оставшиеся ферменты запечатываются. На этой стадии белки, которые присутствуют в продуктах, распадаютсяна отдельные элементы.Впоследствии они будут перевариваться.
  2. Переваривание. Под действием панкреатина и остальных ферментов наблюдается последующая денатурация до белков первого порядка. Организм способен получать аминокислоты исключительно из простейших белковых цепей. Для этого он вырабатывает кислоту. Это облегчает расщепление веществ.
  3. Расщепление на аминокислоты. Под действием клеток слизистых оболочек кишечника денатурированные белки попадают в кровь. Простой белок преобразуется организмом в аминокислоты.
  4. Расщепление до энергии. Под действием большого количества заменителей инсулина и ферментов для усваивания углеводов белок трансформируется в глюкозу. При нехватке энергии организм не выполняет денатурацию белка, а сразуегорасщепляет. В результате вырабатывается чистая энергия.
  5. Перераспределение аминокислот. Белковые элементы циркулируют в системном кровотоке и под действием инсулина попадают во все клетки. Как следствие, образуются требуемые аминокислотные связи. По мере распространения белков по организму происходит восстановление фрагментов мышечных элементов и структур, которые связаны со стимуляцией выработки, работой мозга, дальнейшей ферментацией.
  6. Образование новых белковых структур. Аминокислоты связываются с микроразрывами в мышцах и приводят к созданию новых тканей. Как следствие, наблюдается гипертрофия мышц. Аминокислоты в требуемом составе трансформируются в мышечно-белковую ткань.
  7. Обмен белков. При избытке таких структур под влиянием инсулина они снова проникают в систему кровообращения. Это приводит к формированию новых структур. При существенном напряжении в мышцах, длительном голодании или в период заболевания организм использует белки для компенсации недостатка аминокислот в остальных тканях.
  8. Перемещение липидных структур. Белки, которые соединяются в фермент липазу, способствуют перемещению и перевариванию с желчью полинасыщенных жирных кислот. Эти элементы принимают участие в перемещении жиров и выработке холестерина. С учетом состава аминокислот белки могут синтезироваться в полезный или вредный холестерин.
  9. Выведение окисленных продуктов. Использованные аминокислоты покидают организм с продуктами обмена. Мышцы, которые повреждаются вследствие нагрузок, тоже выводятся из организма.

Транскрипция

На первом этапе транскрипции с цепочки ДНК снимается абсолютно точная копия, в результате которой получается идентичная с исходной цепочка РНК. Для такой информационной копии нужен катализатор, в роли которого выступают ферменты, и источник питания, в случае синтеза белка — это АТФ. Процесс синтеза происходит с высокой скоростью — в пределах одного организма за минуту осуществляется до 60 000 связей на уровне пептидов.

Рис 3. Сравнение ДНК и РНК.

Двойная цепочка ДНК расположена в ядре клетки в виде спирали. В начале транскрипции она разматывается и на одной из частей начинается синтез иРНК, так называемая информационная. Это одинарная цепь, точно повторяющая структуру  ДНК. Поэтому реакции биосинтеза белка называют матричными.  Вместо тимина, находящегося в нематричной цепочке ДНК, в иРНК используется  урацил. В качестве катализатора «работает» РНК-полимераза.

Сложность возникает в том, что генов в молекуле ДНК очень много, а копировать нужно только один из них, причем, строго определенный. То есть, начинать снятие информации РНК должна не только в заданный момент, но и с заданного места. Для исключения ошибок в начале каждого фрагмента ДНК расположен специальный маркер, комбинация нуклеотидов под названием «промотор». Копирование с такого маркера начинается и на таком же, но с противоположной стороны, заканчивается. Конечный маркер получил название «терминатор».

Трансляция (синтез белка)

Трансляция (англ. translation – перевод) – это биосинтез белка на матрице мРНК.

После переноса информации с ДНК на матричную РНК начинается синтез белков. Каждая зрелая мРНК несет информацию только об одной полипептидной цепи. Если клетке необходимы другие белки, то необходимо транскрибировать мРНК с иных участков ДНК.

Биосинтез белков или трансляция происходит на рибосомах, внутриклеточных белоксинтезирующих органеллах, и включает 5 ключевых элементов:

  • матрица – матричная РНК,
  • растущая цепь – полипептид,
  • субстрат для синтеза – 20 протеиногенных аминокислот,
  • источник энергии – ГТФ,
  • рибосомальные белки, рРНК и белковые факторы.

Выделяют три основных стадии трансляции: инициация, элонгация, терминация.

Инициация

Для инициации необходимы мРНК, ГТФ, малая и большая субъединицы рибосомы, три белковых фактора инициации (ИФ-1, ИФ-2, ИФ-3), метионин и тРНК для метионина.

В начале этой стадии формируются два тройных комплекса: 

  • первый комплекс – мРНК + малая субъединица + ИФ-3,
  • второй комплекс – метионил-тРНК + ИФ-2 + ГТФ.

После формирования тройные комплексы объединяются с большой субъединицей рибосомы. В этом процессе активно участвуют белковые факторы инициации, источником энергии служит ГТФ. После сборки комплекса инициирующая метионил-тРНК связывается с первым кодоном АУГ матричной РНК и располагается в П-центре (пептидильный центр) большой субъединицы. А-центр (аминоацильный центр) остается свободным, он будет задействован на стадии элонгации для связывания аминоацил-тРНК.

События стадии инициации

После присоединения большой субъединицы начинается стадия элонгации.

Элонгация

Для этой стадии необходимы все 20 аминокислот, тРНК для всех аминокислот, белковые факторы элонгации, ГТФ. Удлинение цепи происходит со скоростью примерно 20 аминокислот в секунду.

Элонгация представляет собой циклический процесс. Первый цикл (и следующие циклы) элонгации включает три шага:

  1. Присоединение аминоацил-тРНК (еще  второй)  к кодону мРНК (еще второму),  аминокислота при этом встраивается в А-центр рибосомы. Источником энергии служит ГТФ.
  2. Фермент пептидилтрансфераза осуществляет перенос метионина с метионил-тРНК (в П-центре) на вторую аминоацил-тРНК (в А-центре) с образованием пептидной связи между метионином и второй аминокислотой. При этом уже активированная СООН-группа метионина связывается со свободной NH2-группой второй аминокислоты. Здесь источником энергии служит макроэргическая связь между аминокислотой и тРНК.
  1. Фермент транслоказа перемещает мРНК относительно рибосомы таким образом, что первый кодон АУГ оказывается вне рибосомы, второй кодон (на рисунке ) становится напротив П-центра, напротив А-центра оказывается третий кодон (на рисунке ). Для этих процессов необходима затрата энергии ГТФ. Так как вместе с мРНК перемещаются закрепленные на ней тРНК, то инициирующая первая тРНК выходит из рибосомы, вторая тРНК с дипептидом помещается в П-центр.

Последовательность событий стадии элонгации

Второе повторение цикла – начинается с присоединения третьей аминоацил-тРНК к третьему кодону мРНК, аминокислота-3 становится в А-центр. Далее трансферазная реакции повторяется и образуется трипептид, занимающий А-центр, после чего он смещается в П-центр в транслоказной реакции..

В пустой А-центр входит четвертая аминоацил-тРНК и начинается третий цикл элонгации:

Образование пептидной связи при встраивании четвертой аминокислоты в пептид.Субъединицы рибосомы, большая часть транспортных РНК и матричная РНК не показаны.

Цикл элонгации (реакции 1,2,3) повторяется столько раз, сколько аминокислот необходимо включить в полипептидную цепь.

Терминация

Синтез белка продолжается до тех пор, пока рибосома не достигнет на мРНК особых терминирующих кодонов – стоп-кодонов УАА, УАГ, УГА. Данные триплеты не кодируют ни одной из аминокислот, их также называют нонсенс-кодоны. При вхождении этих кодонов внутрь рибосомы происходит активация белковых факторов терминации, которые последовательно катализируют:

  1. Гидролитическое отщепление полипептида от конечной тРНК.
  2. Отделение от П-центра последней, уже пустой, тРНК.
  3. Диссоциацию рибосомы.

Источником энергии для завершения трансляции является ГТФ.

Реакции стадии терминации

Полирибосомы

По причине того, что продолжительность жизни матричной РНК невелика, перед клеткой стоит задача использовать ее максимально эффективно, т.е. получить максимальное количество «белковых копий». Для достижения этой цели на каждой мРНК может располагаться не одна, а несколько рибосом, встающих последовательно друг за другом и синтезирующих пептидные цепи. Такие образования называются полирибосомы.

Информационная РНК

Информационная (матричная) РНК (мРНК) – РНК, являющаяся комплементарной копией участков значащих цепей генов ДНК, содержащих информацию об аминокислотных последовательностях полипептидных цепей белков.

Структура мРНК

Первичная структура

Рисунок 2. Химическое строение полинуклеотида РНК

Матричная РНК — одноцепочечный полинуклеотид (Рисунок 2). Он состоит из четырех нуклеотидов. Нуклеотид ы состоят из азотистого основания (аденин – А, гуанин – G, цитозин – C и урацил – U), сахара рибозы и фосфатной группы. 5′-гидроксил концевого нуклеозида (молекула, содержащая азотистое основание, связанное с сахаром) не образует связи между нуклеотидами. Он обозначается как 5′-конец РНК, а другой концевой нуклеозид со свободным З’-гидроксилом называют З’-концом РНК. мРНК читается рибосомой в направлении от 5′-конца к З’-концу .
В природных мРНК 5′-концевой гидроксил всегда замещен. мРНК эукариотов в большинстве случаев несут на 5′-конце специальную группу – кэп (Рисунок 3). Кэп представляет собой остаток 7-метилгуанозина (Рисунок 4).

Рисунок 3. Строение 5′-конца кэпированной мРНК

Рисунок 4. Модель молекулы 7-метилгуанозина

Функциональные участки мРНК

Чаще всего началом (инициаторным кодоном) кодирующей части мРНК яв¬ляется AUG. Не любой триплет может стать инициаторным. Это определяется собственной структурой кодона и положением в структуре мРНК.
мРНК может содержать нуклеотидные последовательности для кодирования нескольких белков. Это характерно для прокариот. Такие мРНК называются полицистронными. У эукариот мРНК обычно кодируют одну полипептидную цепь (моноцистронные мРНК).

Пространственная структура

Рисунок 5. Вторичная структура РНК

Трехмерная структура мРНК еще не установлена. Измерения физических параметров мРНК свидетельствуют о том, что они являются сильно свернутыми структурами, с внутрицепными взаимодействиями между азотистыми основаниями. Вторичная структура мРНК образована благодаря комплементарному спариванию отдельных участков одной и той же цепи друг с другом, с образованием большого набора относительно коротких двуспиральных участков (Рисунок 5).
Вторичная и третичная структуры мРНК играют определенную роль в трансляции. Однако роль вторичной и третичной структуры мРНК в скорости считывания цепи не установлена.
Некодирующие последовательности мРНК участвуют в определении специальных пространственных структур, ответственных за регулирование инициации трансляции, элонгации и других процессов.

Функция

Рибосомы — это мельчайшие частицы, состоящие из РНК и связанных белков, которые функционируют для синтеза белков. Белки необходимы для многих клеточных функций, таких как восстановление повреждений или управление химическими процессами. Рибосомы можно обнаружить плавающими в цитоплазме или прикрепленными к эндоплазматической сети . Их основная функция — преобразование генетического кода в аминокислотную последовательность и построение белковых полимеров из аминокислотных мономеров.

Рибосомы действуют как катализаторы в двух чрезвычайно важных биологических процессах, называемых переносом пептидила и гидролизом пептидила. «Центр PT отвечает за образование белковых связей во время удлинения белка».

Перевод

Рибосомы — это место биосинтеза белка , процесса трансляции мРНК в белок . МРНК содержит серию кодонов, которые декодируются рибосомой для образования белка. Используя мРНК в качестве матрицы, рибосома пересекает каждый кодон (3 нуклеотида ) мРНК, спаривая его с соответствующей аминокислотой, обеспечиваемой аминоацил-тРНК . Аминоацил-тРНК содержит комплементарный антикодон на одном конце и соответствующую аминокислоту на другом. Для быстрого и точного распознавания соответствующей тРНК рибосома использует большие конформационные изменения ( конформационная корректура ). Маленькая рибосомная субъединица, обычно связанная с аминоацил-тРНК, содержащей первую аминокислоту метионин , связывается с кодоном AUG на мРНК и рекрутирует большую рибосомную субъединицу. Рибосома содержит три сайта связывания РНК, обозначенных A, P и E. Сайт A связывает аминоацил-тРНК или факторы терминации высвобождения; Р-сайт связывает пептидил-тРНК (тРНК связывается с поли-пептидной цепи); и E-сайт (выход) связывает свободную тРНК. Синтез белка начинается со стартового кодона AUG около 5′-конца мРНК. мРНК сначала связывается с Р-сайтом рибосомы. Рибосома распознает стартовый кодон с помощью последовательности мРНК Шайна-Далгарно у прокариот и бокса Козака у эукариот.

Хотя в катализе пептидной связи участвует C2- гидроксил аденозина P-участка РНК в механизме протонного челнока, другие этапы синтеза белка (например, транслокация) вызываются изменениями конформаций белка. Поскольку их каталитическое ядро состоит из РНК, рибосомы классифицируются как « рибозимы », и считается, что они могут быть остатками мира РНК .

Рисунок 5: Трансляция мРНК (1) рибосомой (2) (показаны как малые и большие субъединицы) в полипептидную цепь (3). Рибосома начинается в стартовом кодоне РНК ( AUG ) и заканчивается стоп-кодоном ( UAG ).

На рисунке 5 обе рибосомные субъединицы ( малая и большая ) собираются в стартовом кодоне (ближе к 5′-концу мРНК ). Рибосома использует тРНК, которая соответствует текущему кодону (триплету) на мРНК, чтобы присоединить аминокислоту к полипептидной цепи. Это делается для каждого триплета мРНК, в то время как рибосома перемещается к 3′-концу мРНК. Обычно в бактериальных клетках несколько рибосом работают параллельно с одной мРНК, образуя так называемую полирибосому или полисому .

Котрансляционное складывание

Известно, что рибосома активно участвует в сворачивании белка . Полученные таким образом структуры обычно идентичны структурам, полученным в ходе химического рефолдинга белка; однако пути, ведущие к конечному продукту, могут быть разными. В некоторых случаях рибосома имеет решающее значение для получения функциональной белковой формы. Например, один из возможных механизмов сворачивания белков с глубокими узлами основан на том, что рибосома проталкивает цепь через прикрепленную петлю.

Присутствие белка контроля качества рибосом Rqc2 связано с мРНК-независимым удлинением белка. Это удлинение является результатом того рибосомального (через тРНК , принесенный Rqc2) из CAT хвостов : рибосомы расширить C -terminus из остановленного белка со случайными, переводом-независимых последовательностями через lanines и т hreonines .

Как работает рРНК

Также существуют рибосомальные РНК, которые входят в состав самой рибосомы и выполняют синтез белка в клетке. Получается, что рибосомы являются немембранными структурами, они не имеют оболочек, как, например, ядро или эндоплазматическая сеть, а состоят просто из белков и рибосомальных РНК. Что же происходит, когда последовательность из нуклеотидов, то есть информационная РНК, попадает к рибосомам?

Транспортная РНК, которая находится в цитоплазме, подтягивает к себе аминокислоты. Откуда же взялись аминокислоты в клетке? А образуются они вследствие расщепления белков, которые поступают внутрь с пищей. Эти соединения переносятся током крови к клеткам, где происходит продуцирование необходимых для организма белков.

Строение

Важнейшей органеллой клетки является ядро. Оно содержит генетическую информацию и ядрышко, где образуются рибосомы. Синтезированные рибосомы через поры ядерной мембраны попадают либо на эндоплазматическую сеть, либо в цитоплазму. В зависимости от расположения в эукариотической клетке выделяют два вида рибосом:

  • связанные – располагаются на эндоплазматической сети (шероховатый вид);
  • свободные – располагаются в цитозоле.

Гладкая ЭПС образуется после освобождения от рибосом. В растительных клетках гладкая ЭПС формирует провакуоли, из которых затем образуются вакуоли.

Рис. 1. Расположение рибосом в клетке.

Рибосомы – немембранные органеллы, имеющие округлую форму и состоящие из двух частей – субъединиц (большой и малой), каждая из которых содержит рибосомальную РНК (рРНК) и белки. С химической точки зрения рибосома – нуклеопротеид, состоящий из нуклеиновых кислот и протеинов.

Рис. 2. Строение рибосом.

Связанные и свободные рибосомы называются цитоплазматическими рибосомами. Также существуют собственные рибосомы митохондрий и пластид. Они отличаются меньшим количеством белков и рРНК.

Различают четыре разновидности молекул РНК рибосомы:

ТОП-3 статьи

которые читают вместе с этой

  • 18S-РНК – содержит 1900 нуклеотидов;
  • 5S-РНК – содержит 120 нуклеотидов;
  • 5,8S-РНК – состоит из 160 нуклеотидов;
  • 28S-РНК – состоит из 4800 нуклеотидов.

Малая частица рибосомы образована 30–35 белками и 18S-РНК. В большую субчастицу входит 45-50 белков и 5S-, 5,8S-, 28S-РНК.

В нерабочем состоянии части рибосом разъединены. Они соединяются с помощью информационной (матричной) РНК, обхватывая её с двух сторон. При синтезе белка рибосомы объединяются, образуя комплексы – полисомы или полирибосомы, связанные мРНК и напоминающие бусины на нитке.

Рибосомы прокариот меньше, чем эукариот. Диаметр рибосом клетки человека, животных, растений и грибов – 25–30 нм, бактерий – 15–20 нм.

Источник

Рибосома, возможно, сначала возникла в мире РНК , появившись как самовоспроизводящийся комплекс, который только позже развил способность синтезировать белки, когда начали появляться аминокислоты . Исследования показывают, что древние рибосомы, построенные исключительно из рРНК, могли развить способность синтезировать пептидные связи . Кроме того, данные убедительно указывают на древние рибосомы как самовоспроизводящиеся комплексы, в которых рРНК в рибосомах имела информационные, структурные и каталитические цели, поскольку она могла кодировать тРНК и белки, необходимые для саморепликации рибосом. Гипотетические клеточные организмы с самовоспроизводящейся РНК, но без ДНК называются рибоцитами (или рибоцеллами).

Поскольку аминокислоты постепенно появлялись в мире РНК в пребиотических условиях, их взаимодействие с каталитической РНК увеличивало как диапазон, так и эффективность функции молекул каталитической РНК. Таким образом, движущей силой эволюции рибосомы из древней самовоспроизводящейся машины в ее нынешнюю форму в качестве трансляционной машины могло быть давление отбора, направленное на включение белков в механизмы самовоспроизведения рибосомы, с тем чтобы увеличить ее способность к самовоспроизведение.

Перевод


Иллюстрирует процесс трансляции, показывающий цикл спаривания кодон-антикодон тРНК и включение аминокислоты в растущую полипептидную цепь рибосомой.

Рибосома на цепи мРНК с прибывающими тРНК, которые выполняют спаривание кодонов и антикодонов, доставляют свою аминокислоту в растущую полипептидную цепь и уходят. Демонстрирует действие рибосомы как биологической машины, которая в наномасштабе выполняет трансляцию. Рибосома движется вдоль зрелой молекулы мРНК, включающей тРНК и производящей полипептидную цепь.

Во время трансляции рибосомы синтезируют полипептидные цепи из матричных молекул мРНК. У эукариот трансляция происходит в цитоплазме клетки, где рибосомы либо свободно плавают, либо прикрепляются к эндоплазматической сети . У прокариот, у которых отсутствует ядро, процессы как транскрипции, так и трансляции происходят в цитоплазме.

Рибосомы — это сложные молекулярные машины , состоящие из смеси белка и рибосомной РНК , организованных в две субъединицы (большую и малую), которые окружают молекулу мРНК. Рибосома считывает молекулу мРНК в направлении 5′-3 ‘и использует ее в качестве матрицы для определения порядка аминокислот в полипептидной цепи. Чтобы транслировать молекулу мРНК, рибосома использует небольшие молекулы, известные как передаточные РНК (тРНК), для доставки правильных аминокислот к рибосоме. Каждая тРНК состоит из 70-80 нуклеотидов и принимает характерную структуру клеверного листа из-за образования водородных связей между нуклеотидами внутри молекулы. Существует около 60 различных типов тРНК, каждая тРНК связывается с определенной последовательностью из трех нуклеотидов (известной как кодон ) в молекуле мРНК и доставляет определенную аминокислоту.

Рибосома первоначально прикрепляется к мРНК в стартовом кодоне (AUG) и начинает транслировать молекулу. Нуклеотидная последовательность мРНК читается триплетами — три соседних нуклеотида в молекуле мРНК соответствуют одному кодону. Каждая тРНК имеет открытую последовательность из трех нуклеотидов, известную как антикодон, которые комплементарны по последовательности конкретному кодону, который может присутствовать в мРНК. Например, первый встреченный кодон — это стартовый кодон, состоящий из нуклеотидов AUG. Правильная тРНК с антикодоном (комплементарная 3-нуклеотидная последовательность UAC) связывается с мРНК с помощью рибосомы. Эта тРНК доставляет правильную аминокислоту, соответствующую кодону мРНК, в случае стартового кодона это аминокислота метионин. Следующий кодон (соседний со стартовым кодоном) затем связывается правильной тРНК с комплементарным антикодоном, доставляя следующую аминокислоту к рибосоме. Затем рибосома использует свою ферментативную активность пептидилтрансферазы, чтобы катализировать образование ковалентной пептидной связи между двумя соседними аминокислотами.

Затем рибосома перемещается вдоль молекулы мРНК к третьему кодону. Затем рибосома высвобождает первую молекулу тРНК, так как только две молекулы тРНК могут быть объединены одной рибосомой за один раз. Выбирается следующая комплементарная тРНК с правильным антикодоном, комплементарным третьему кодону, доставляющая следующую аминокислоту к рибосоме, которая ковалентно присоединена к растущей полипептидной цепи. Этот процесс продолжается, когда рибосома движется вдоль молекулы мРНК, добавляя к полипептидной цепи до 15 аминокислот в секунду. За первой рибосомой до 50 дополнительных рибосом могут связываться с молекулой мРНК, образуя полисому , что позволяет одновременно синтезировать несколько идентичных полипептидных цепей. Обрыв растущей полипептидной цепи происходит, когда рибосома встречает стоп-кодон (UAA, UAG или UGA) в молекуле мРНК. Когда это происходит, тРНК не может распознать ее, и фактор высвобождения индуцирует высвобождение полной полипептидной цепи из рибосомы. Доктор Хар Гобинд Хорана , ученый из Индии, расшифровал последовательности РНК примерно для 20 аминокислот. Он был удостоен Нобелевской премии в 1968 году вместе с двумя другими учеными за свою работу.

Роль РНК и ДНК в процессе

Итак, запускает синтез белков в клетках цепочка ДНК, которая несет информацию о каком-либо конкретном белке и называется геном. Цепочка ДНК в процессе транскрипции расплетается, то есть её спираль начинает распадаться в линейную молекулу. С ДНК информация должна преобразоваться на РНК. Напротив тимина в данном процессе должен становиться аденин. Цитозин же имеет в качестве пары гуанин, точно так же, как ДНК. Напротив аденина РНК становится урацил, потому как в РНК такого нуклеотида, как тимин, не существует, он заменяется просто урациловым нуклеотидом. С гуанином соседствует цитозин. Напротив аденина становится урацил, а в паре с тимином располагается аденин. Эти молекулы РНК, которые становятся напротив, называются информационными РНК (иРНК). Они способны через поры выходить из ядра в цитоплазму и рибосомы, которые, собственно, и выполняют функцию синтеза белков в клетках.

8.2.3. Синтез белка window.top.document.title = «8.2.3. Синтез белка»;

Синтез белка (трансляция) является самым сложным из биосинтетических процессов: он требует очень большого количества ферментов и других специфических макромолекул, общее количество которых, видимо, доходит до трёхсот. Часть из них к тому же объединены в сложную трёхмерную структуру рибосом. Но несмотря на большую сложность синтез протекает с чрезвычайно высокой скоростью (десятки аминокислотных остатков в секунду). Процесс может замедляться и даже останавливаться ингибиторами-антибиотиками.

Модель 8.8.
Полирибосома

В пятидесятых годах XX века было установлено, что синтез белка происходит в рибонуклеопротеиновых частицах, называющихся рибосомами. Диаметр рибосомы бактерии E. coli составляет 18 нм, а их общее количество – десятки тысяч в клетке. Рибосомы эукариот несколько крупнее (21 нм). Сам процесс протекает в пять этапов.

  1. Активация аминокислот. Каждая из 20 аминокислот белка соединяется ковалентными связями к определённой т-РНК, используя энергию АТФ. Реакция катализуется специализированными ферментами, требующими присутствия ионов магния.

  2. Инициация белковой цепи. и-РНК, содержащая информацию о данном белке, связывается с малой частицей рибосомы и с инициирующей аминокислотой, прикреплённой к соответствующей т-РНК. т-РНК комплементарна с находящимся в составе и-РНК триплетом, сигнализирующим о начале белковой цепи.

  3. Элонгация. Полипептидная цепь удлиняется за счёт последовательного присоединения аминокислот, каждая из которых доставляется к рибосоме и встраивается в определённое положение при помощи соответствующей т-РНК. В настоящее время генетический код полностью расшифрован, то есть всем аминокислотам поставлены в соответствие триплеты нуклеотидов. Элонгация осуществляется при помощи белков цитозоля (так называемые факторы элонгации).

  4. Терминация. После завершения синтеза цепи, о чём сигнализирует ещё один специальный кодон и-РНК, полипептид высвобождается из рибосомы.

  5. Сворачивание и процессинг. Чтобы принять обычную форму, белок должен свернуться, образуя при этом определённую пространственную конфигурацию. До или после сворачивания полипептид может претерпевать процессинг, осуществляющийся ферментами и заключающийся в удалении лишних аминокислот, присоединении фосфатных, метильных и других групп и т. п.


Рисунок 8.2.3.1.Генетический код

Генетический код обладает рядом особенностей. Во-первых, в коде отсутствуют «знаки препинания», то есть сигналы, показывающие начало и конец кодонов. Во-вторых, 3 нуклеотидных триплета (УАГ, УАА, УГА) не соответствуют никакой аминокислоте, а обозначают конец полипептидной цепи, а кодон АУГ сигнализирует о начале цепи либо (если он в середине последовательности) об аминокислоте метионине. Многие аминокислоты могут кодироваться несколькими различными кодонами. Все кодоны аминокислот одинаковы у всех изученных организмов: от вируса до человека. Создаётся впечатление, что все организмы на Земле происходят от единого генетического предка. Впрочем, в последнее время в митохондриях клеток человека были обнаружены кодоны, не совпадающие с «нормальным» словарём. Их наличие представляет собой загадку для ученых.

Синтез белка требует больших затрат энергии – 24,2 ккал/моль. После окончания синтеза белок при помощи специального полипептидного лидера доставляется к месту своего назначения.

Синтез белка контролируют гены-операторы. Совокупность рабочих генов – операторов и структурных генов – называется оперон. Опероны не являются самостоятельной системой, а «подчиняются» генам-регуляторам, отвечающим за начало или прекращение работы оперона. Свой контроль гены-регуляторы осуществляют при помощи специального вещества, которое они при необходимости синтезируют. Это вещество реагирует с оператором и блокирует его, что влечёт за собой прекращение работы оперона. Если же вещество реагирует с небольшими молекулами – индукторами, это будет являться сигналом к возобновлению работы системы.

Модель 8.9.
Синтез белка

Модель оперонов была разработана на микроорганизмах, но она соответствует и принципу работы генома эукариот. У последних гены образуют сложные системы, называемые супергенами, которые могут одновременно кодировать множество идентичных друг другу молекул белка.


Рисунок 8.2.3.2.Синтез белка у прокариот и эукариот

Все многоклеточные организмы развиваются из одной-единственной клетки – зиготы. Процесс дифференцировки клеток, видимо, связан с управлением синтезом белка генами-регуляторами, но каким конкретно образом осуществляется это управление – пока остаётся неясным.

Матричный характер реакции биосинтеза

Термин «матрица» употребляется, когда речь идет об отливке или повторения формы монет, медальонов, типографского шрифта. Форма для отливки точно копирует все детали, не упуская ни малейшей мелочи и не допуская лишних фрагментов. Матричный синтез похож на этот процесс: новые молекулы белка создаются по плану, который заложен в структуре ДНК.

Реакции матричного синтеза позволяют сохранять определенную последовательность мономерных звеньев в полимерной, длинной цепочке белка. Роль матрицы выполняет ДНК, информация с которой попадает на и- РНК. Полученные мономеры «сходят с конвейера» и собираются в одно место в клетке. За счет катализаторов, ускоряющих процесс, он проходит быстро и четко, без сбоев.

Расположение нуклеотидов ДНК и аминокислот белка в строгой последовательности, помогает фиксировать их на матрице, а затем собирать в белковую макромолекулу, «сшивая» определенные участки. Готовый полимер сходит с матрицы, и начинается синтез новой молекулы. 

Важно! Благодаря матричному синтезу возможно воспроизведение себе подобных клеток и организмов. Он помогает сохранять уникальный наследственный материал каждого организма

Заключение

Питательные вещества оказывают сильный эффект на синтез белка, и процесс роста мышц. Выбор правильного времени для приема пищи может привести к прогрессу в ваших тренировках. В то время как нет никакого идеального решения, и одна рекомендация не подходит для всех — что зависит от индивидуальной чувствительности к инсулину, обмена веществ, строения типа тела, и цели — мы определили общие для вас стратегии потребления нутриентов, основанные на последних научных исследований, которые могут быть легко адаптированы для удовлетворения потребностей каждого атлета. Используйте их в качестве шаблона для максимального синтеза белка и максимального роста.