Самая близкая звезда к земле

Примечания и ссылки

Заметки

  1. Равновесная температура черного тела .
  2. Моделирование основано на атмосфере, идентичной атмосфере Земли, а планета покрыта океаном. Пунктирная линия — это граница между жидкой поверхностью океана и поверхностью замерзшего океана.

Рекомендации

  1. ↑ and .
  2. (in) на сайте Phys.org на .
  3. (in) «  Землеподобная планета обнаружила вращающегося соседа Солнца  » , CNN ,24 августа 2016 г.
  4. (in) Никола Дэвис, «  Открытие потенциально похожей на Землю планеты Проксима b вселяет надежды на жизнь  » , The Guardian ,24 августа 2016 г.( , по состоянию на 24 августа 2016 г. )
  5. (in) Кеннет Чанг, «  Одна звезда над планетой, которая может быть другой Землей  » , The New York Times ,24 августа 2016 г.( , по состоянию на 24 августа 2016 г. )
  6. (in) Эшли Стрикленд, «  Найдена ближайшая потенциально обитаемая планета к нашей солнечной системе  » , CNN ,24 августа 2016 г.( , по состоянию на 25 августа 2016 г. )
  7. .
  8. (де) , на schwaebische.de ,24 августа 2016 г..
  9. ↑ и (in) на www.ice.cat (по состоянию на 25 августа 2016 г. )
  10. (in) на phl.upr.edu ,17 августа 2016 г.(по состоянию на 25 августа 2016 г. )
  11. Дэвид Фосе, экзопланеты , Белин, 159  с. ( ISBN  978-2-410-01013-8 ) , см. Вставку на стр. 144
  12. ↑ и .
  13. ↑ и Эрве Морен, «  Проксима b: открытие ближайшей к Земле экзопланеты  », Le Monde ,24 августа 2016 г..
  14. (in) на eso.org .
  15. .
  16. (en-US) Сара Скоулз , (по состоянию на 26 августа 2016 г. )

Звезда Барнарда

Звезда Барнарда в ИК

Звезда, открытая Э. Барнардом в 1916 году и названная в его честь, причисляется к спектральному классу M. Это – красный карлик. Место его расположения – экваториальное созвездие Змееносца, на расстоянии в 5,96 световых годах от Земли. Маленькое светило существенно уступает нашему Солнцу, достигая по массе и диаметру 0,17 от его значения. Звезду не обнаружить невооруженным глазом, однако, она четвертая от нас по удаленности. «Летящая Барнарда» знаменита проворством собственного движения, которое направлено в сторону нашего Солнца. Однажды она станет к нам ближе, чем Проксима Центавра. Ее скорость является рекордной, за год она проходит 10,36 угловых секунд.

Наличие планет

Калифорнийская группа ученых на протяжении десятилетий прилагает усилия к обнаружению планет в окружении звезды Барнарда, но пока об их существовании нет никаких данных.

Какая звезда самая близкая к Земле?

Сравнение система Альфы Центавры и нашей Солнечной системы

Самой близкой к Земле звездой помимо Солнца считают Альфа Центавра. Она занимает третье место по уровню яркости и проживает всего в 4.37 световых годах. Но это не одиночный объект, а тройная система. Прежде всего, мы видим бинарную пару, совершающую обороты вокруг общего центра тяжести за 80 лет. Альфа Центавра А ярче Солнца, а Альфа Центавра В немного уступает. Третий член этой системы – Проксима Центавра. Запомните это название, так как именно она является ближайшей к Земле звездой (4.24 световых лет).

Сравнение размеров звезд системы Альфа Центавра и Солнце

Система Альфа Центавра расположена в созвездие Центавра, которое можно наблюдать только из южного полушария. Но даже там не получится разглядеть эту звезду. Дело в том, что она слишком слабая и понадобится довольно мощный телескоп. Чтобы вы понимали, у аппарата Новые Горизонты ушло бы 78000 лет, чтобы подлететь к Проксима Центавра.

Проксима Центавра является самой близкой к Земле звездой уже 32000 лет и пробудет на этой позиции еще 33000 лет. Через 26700 лет она сократит дистанцию до 3.11 световых лет. После нее ближайшей к Земле звездой является Росс 248.

Другие методы измерения расстояний

Имеется еще несколько методов измерения расстояний в космосе. Один из них основан на предположении, что вселенная расширяется с известной скоростью. Если известна скорость, с которой галактики удаляются от нашей галактики, то с помощью закона Хаббла

можно рассчитать насколько далеко они от нас. Закон Хаббла гласит, что расстояние до галактики равно скорости галактики, деленной на постоянную Хаббла, которая является известной константой. Скорость галактики можно определить, изучая спектр галактики, а затем, учитывая эффект Доплера, можно определить расстояние. Эффект Доплера, более известный в астрономии как смещение Доплера — это изменение частоты электромагнитного излучения (в нашем случае — света), излучаемого объектом, который движется относительно наблюдателя. При движении в сторону от наблюдателя этот спектр сдвигается в сторону низких частот, то есть в красную сторону, причем степень сдвига зависит от скорости удаления галактики. По смещению можно рассчитать скорость, а затем вычислить расстояние.

«Звезды -двойники»

Астрономы из Великобритании разработали очень простую и остроумную методику для измерения расстояний между звездами и Землей, позволяющую определять дистанцию до нашей планеты для любой звезды Млечного Пути при помощи ее «двойника», обладающего идентичными размерами и спектром.

Британские астрономы создали новую методику измерения расстояний в космосе, которая позволяет очень точно вычислять дистанцию от Земли до далеких от нас звезды при помощи ее «двойника», обладающего идентичными размерами и спектром, говорится в статье, опубликованной в журнале Monthly Notices of the Royal Astronomical Society.

«Наша идея очень проста, удивительно, что до нее никто не додумался раньше. Чем дальше от нас расположена звезда, тем более тусклой она будет нам казаться на ночном небе. Если эта звезда и какое-то другое светило обладают абсолютно идентичным спектром, то тогда мы можем использовать разницу в яркости между ними для вычисления расстояния до одной из них, зная дистанцию до другой звезды», – объясняет Джофре Пфайль (Jofre Pfeil) из Кембриджского университета.

Как объясняют Пфайль и его коллеги, сегодня астрономы вычисляют расстояние до далеких от нас светил при помощи так называемого параллакса – того, насколько интересующая их звезда смещается относительно расположенных за ней объектов по мере того, как Земля вращается вокруг Солнца и движется по орбите.

Подобная методика очень точна, однако она работает только для относительно близких к нам светил, расположенных на расстоянии примерно в 1-2 тысячи световых лет от Земли. По этой причине астрономы знают точное расстояние только для 100 тысяч из 100 миллиардов звезд Млечного Пути.

Измерение расстояний до более далеких светил возможно, однако все существующие методики, по мнению Пфайля, опираются на различные статистические модели и допущения о температуре звезды или ее химическом составе, что может вносить существенные искажения в замеры.

Пытаясь уменьшить эти возможные погрешности и разбросы в значениях, группа Пфайля натолкнулась на революционную и при этом простую идею – находить спектральных «двойников» звезд из числа тех, параллакс которых был точно измерен, и измерять расстояние до них по разнице в их яркости.

Ученые проверили работоспособность своей методики на 175 парах светил с идентичным спектром, одно из которых было расположено на большом расстоянии от Земли, а второе – в пределах 1-2 тысяч световых лет. Вычисленные расстояния до более далеких «двойников» почти полностью совпали с результатами других методик, что подтвердило возможность использования этой техники для определения дистанций до далеких светил.

В ближайшее время Пфайль и его коллеги планируют составить каталог пар звезд-двойников, а также попытаются вычислить точные размеры Галактики, от одного ее края и до противоположной стороны.

Видео

Примечания к истории

Как отмечает Азимов в книге « До золотого века» , более ранние писатели, такие как Э. Э. Смит, игнорировали световой барьер, когда писали о межзвездных путешествиях. Ленстер не только работал в рамках теории относительности , он даже подсчитал, что путешествие к Проксиме Центавра займет семь лет, если корабль будет путешествовать с постоянным ускорением и замедлением в одну силу тяжести

Ленстер также отмечает, что такое ускорение доведет корабль до значительной доли скорости света, хотя он не принимает во внимание результирующее замедление времени , которое сократит субъективную продолжительность путешествия как минимум на два года.

Азимов также пишет: «За эти годы я наиболее отчетливо запомнил про« Проксиму Центавра »особый ужас, который я испытал при мысли о расе разумных растений, жаждущих животной пищи. Это почти верный рецепт поразительной науки художественный рассказ, чтобы начать с перевертывания какой-то полностью принятой ситуации, чего-то настолько обычного, что на нее почти не обращают внимания. Конечно, животные едят растения, и, конечно, животные быстры и более или менее умны, в то время как растения неподвижны и совершенно пассивны (за исключением несколько насекомоядных растений, на которые можно не обращать внимания). Но что, если разумные и плотоядные растения питаются животными, а? »

Электромагнитный двигатель EM Drive

Другой предложенный метод межзвездных путешествий — это радиочастотный двигатель с резонансной полостью, известный также как EM Drive. У предложенного еще в 2001 году Роджером Шойером, британским ученым, который создал Satellite Propulsion Research Ltd (SPR) для реализации проекта, двигателя в основе лежит идея того, что электромагнитные микроволновые полости позволяют напрямую преобразовывать электроэнергию в тягу.

Тем не менее последние эксперименты с этой технологией очевидно привели к положительным результатам. В июле 2014 года, на 50-й конференции AIAA/ASME/SAE/ASEE Joint Propulsion Conference в Кливленде, штат Огайо, ученые NASA, занимающиеся передовыми реактивными разработками, заявили, что успешно испытали новую конструкцию электромагнитного двигателя.

В 2010 году профессор Чжуан Янг из Северо-Западного политехнического университета в Сиань, Китай, начала публиковать серию статей о своих исследованиях технологии EM Drive. В 2012 году она сообщила о высокой входной мощности (2,5 кВт) и зафиксированной тяге в 720 мн. В 2014 году она также провела обширные испытания, включая замеры внутренней температуры со встроенными термопарами, которые показали, что система работает.

По расчетам на базе прототипа NASA (которому дали оценку мощности в 0,4 Н/киловатт), космический аппарат на электромагнитном двигателе может осуществить поездку к Плутону менее чем за 18 месяцев. Это в шесть раз меньше, чем потребовалось зонду «Новые горизонты», который двигался на скорости 58 000 км/ч.

Звучит впечатляюще. Но даже в таком случае корабль на электромагнитных двигателях будет лететь к Проксиме Центавра 13 000 лет. Близко, но все еще недостаточно. Кроме того, пока в этой технологии не будут расставлены все точки над ё, рано говорить о ее использовании.

Подтверждения теории

Галактика Андромеды приближается к нам со скоростью примерно 110 км в секунду. Вплоть до 2012 г. не было никаких способов узнать, произойдет столкновение или нет. Сделать вывод о том, что оно почти неминуемо, ученым помог Космический Телескоп Хаббла. После отслеживания перемещений Андромеды с 2002 по 2010 г. был сделан вывод, что столкновение случится примерно через 4 млрд лет.

Подобные явления широко распространены в космосе. Например, считается, что Андромеда в прошлом взаимодействовала как минимум с одной галактикой. А некоторые карликовые галактики, такие как SagDEG, и сейчас продолжают сталкиваться с Млечным Путем, создавая единое образование.

Исследования также показывают, что М33, или Галактика Треугольника, — третий по размерам и самый яркий представитель Местной группы — тоже будет участвовать в этом событии. Наиболее вероятной ее судьбой будет заход на орбиту образовавшегося после слияния объекта, а в далеком будущем — окончательное объединение. Однако столкновение М33 с Млечным Путем раньше, чем приблизится Андромеда, или наша Солнечная Система будет отброшена за пределы Местной группы, исключается.

Теоретические модели нашей галактики

Еще древние астрономы пытались доказать, что видимая полоса на небосклоне — это часть огромного звездного диска, вращающегося вокруг своего центра. Этому утверждению способствовали проводимые математические подсчеты. Получить представление о нашей галактике удалось только спустя тысячи лет, когда в помощь науке пришли инструментальные методы исследования космоса. Прорывом в исследовании природы Млечного пути стала работа англичанина Уильяма Гершеля. В 1700 году он сумел опытным путем доказать, что наша галактика имеет форму диска.


Млечный Путь в телескоп


Эдвин Хаббл

Основополагающей теорией существования галактик является теория американского астрофизика Эдвина Хаббла. Ему принадлежит идея классифицировать все гравитационные образования, деля их на эллиптические галактики и образования спирального типа. Последние, спиральные галактики представляют самую обширную группу, в которую входят образования различных размеров. Крупнейшей из недавно открытых спиральных галактик является NGC 6872, диаметр которой превышает 552 тыс. световых лет.

Электромагнитный двигатель EM Drive

Другой предложенный метод межзвездных путешествий — это радиочастотный двигатель с резонансной полостью, известный также как EM Drive. У предложенного еще в 2001 году Роджером Шойером, британским ученым, который создал Satellite Propulsion Research Ltd (SPR) для реализации проекта, двигателя в основе лежит идея того, что электромагнитные микроволновые полости позволяют напрямую преобразовывать электроэнергию в тягу.


Если традиционные электромагнитные двигатели предназначены для приведения в движение определенной массы (вроде ионизированных частиц), конкретно эта двигательная система не зависит от реакции массы и не испускает направленного излучения. Вообще, этот двигатель встретили с изрядной долей скепсиса во многом потому, что он нарушает закон сохранения импульса, согласно которому импульс системы остается постоянным и его нельзя создать или уничтожить, а только изменить под действием силы.

Тем не менее последние эксперименты с этой технологией очевидно привели к положительным результатам. В июле 2014 года, на 50-й конференции AIAA/ASME/SAE/ASEE Joint Propulsion Conference в Кливленде, штат Огайо, ученые NASA, занимающиеся передовыми реактивными разработками, заявили, что успешно испытали новую конструкцию электромагнитного двигателя.


В апреле 2015 года ученые NASA Eagleworks (часть Космического центра им. Джонсона) заявили, что успешно испытали этот двигатель в вакууме, что может указывать на возможное применение в космосе. В июле того же года группа ученых из отделения космических систем Дрезденского технологического университета разработала собственную версию двигателя и наблюдала ощутимую тягу.

В 2010 году профессор Чжуан Янг из Северо-Западного политехнического университета в Сиань, Китай, начала публиковать серию статей о своих исследованиях технологии EM Drive. В 2012 году она сообщила о высокой входной мощности (2,5 кВт) и зафиксированной тяге в 720 мн. В 2014 году она также провела обширные испытания, включая замеры внутренней температуры со встроенными термопарами, которые показали, что система работает.

По расчетам на базе прототипа NASA (которому дали оценку мощности в 0,4 Н/киловатт), космический аппарат на электромагнитном двигателе может осуществить поездку к Плутону менее чем за 18 месяцев. Это в шесть раз меньше, чем потребовалось зонду «Новые горизонты», который двигался на скорости 58 000 км/ч.

Звучит впечатляюще. Но даже в таком случае корабль на электромагнитных двигателях будет лететь к Проксиме Центавра 13 000 лет. Близко, но все еще недостаточно. Кроме того, пока в этой технологии не будут расставлены все точки над ё, рано говорить о ее использовании.

Описание[]

Ярчайшая звезда в созвездии Центавра на самом деле представляет из себя три звезды, вращающиеся друг вокруг друга, и две звезды — крупнейшая Альфа Центавра А и меньшая по размеру Альфа Центавра B — являются звездами, сопоставимыми по размеру и светимости с Солнцем (AЦA на 20 % крупнее и светится жёлтым, а AЦB — на 15 % меньше и на 500 К холоднее, более оранжевая), тогда как третья — красный карлик Альфа Центавра C, называемая также Проксима Центавра — впятеро меньше и вдвое холоднее нашего светила. Пока что Альфа Центавра — единственная система в галактике, где обнаружены формы жизни.

Астрономические координаты звездной системы Центавра таковы: прямое восхождение — 14 часов 39,6 минут; отклонение — 60˚50′. А и B Центавра находятся на расстоянии примерно 4,37 световых лет (277 600 астрономических единиц, причем одна астрономическая единица (а.е.) — это примерно 149597870 километров — среднее расстояние от Земли до Солнца) от Солнечной системы, а Альфа Центавра C (имя «Проксима» она заслужила тем, что находится ближе всего к Земле) — примерно на 0,15 светового года ближе.

A и B Центавра обладают сильно вытянутыми эллиптическими орбитами (е = 0,52) вокруг общего центра масс, и расстояние между ними колеблется от 11,2 до 35,6 астрономических единиц; полный круг они совершают примерно за восемнадцать лет. Наибольшее сближение этих звезд можно было наблюдать в 1955, 2035, 2115 годах, а следующее наступит только в 2195 году. Альфа Центавра C, находящяяся на расстоянии более 10000 астрономических единиц от двух других звезд, обладает очень слабой гравитационной связью с ними, а на совершение полного оборота вокруг центра масс у неё уходит около миллиона лет. Вполне вероятно, что воздействие ближайших звездных систем в будущем все же настолько изменит орбиту красного карлика, что он навсегда потеряет связь с родной системой и отправится в открытый космос.

Планетарная система

Ранние исследования с помощью телескопов и беспилотных аппаратов показали, что система Альфы Центавра полна сюрпризов. Земным обсерваториям удалось обнаружить три газовых гиганта, вращающихся в системе Альфы Центавра B, однако потребовалось ещё двадцать лет, чтобы обнаружить пять меньших по размеру каменистых планет. Планеты названы аналогично планетам Солнечной системы, только древнеримские имена заменены на древнегреческие: Вулкан (полурасплавленная планета, самая близкая к звезде — без аналога), Гермес (Меркурий), Афродита (Венера), Гея (Земля), Арес (Марс), Зевс (Юпитер), Кронос (Сатурн), Посейдон (Нептун, так как планета занимает эквивалентную орбиту, и «Уран» в этой системе отсутствует). Отдаленность последних трех планет — газовых гигантов — от «родной» звезды и, как следствие, близость к соседней, создают условия для формирования крайне нестабильных орбит и практически полного отсутствия спутников, и ученые строят предположения, что, возможно, в самом ближайшем будущем Посейдон и Кронос могут попросту столкнуться.

Пандора на фоне Полифема

К счастью, в соседней системе, Альфы Центавра A, пока что все спокойно, и три газовых гиганта, обнаруженных с Земли при помощи недавно заработавшей Системы коорбитальных телескопических интерферометров — Океан, Кой и Крий — обращаются вокруг своего светила по устойчивым орбитам, причем если Океан расположен слишком близко к светилу, а Крий — слишком далеко, то второй гигант — Кой, переименованный в Полифем — является одним из наиболее примечательных объектов всей системы, благодаря своим спутникам; на нескольких из них, диаметром свыше 6,437 километра, были замечены облака и океаны. Дистанционно управляемые зонды обнаружили азотно-кислородную атмосферу на пятом и шестом спутниках; такой тип атмосферы может быть создан лишь углеродными формами жизни. Несмотря на то что на остальных спутниках имеются большие запасы поверхностной воды, их разреженная атмосфера большей частью состоит из азота и углекислого газа, что указывает на отсутствие жизни, и среди четырнадцати спутников пока лишь на единственном — Пандоре — обнаружены высшие формы жизни, которые стали величайшим из космических открытий Земли XXII века.

Гравитационная ловушка

Планета сталкивается с давлением звездного ветра, почти в 2000 раз превышающим его значение на Земле. Поверхность этого мира постоянно бомбардируется заряженными частицами, которые красный карлик непрерывно выбрасывает из своей короны. Кроме того, Проксима Центавра b вращается вокруг своей родительской звезды так, что ее вращение, вероятно, заблокировано из — за действия гравитационных сил. И поэтому одна ее сторона всегда обращена к Солнцу, а другая существует в вечной тени. Такая особенность может оказать сильное влияние на характеристики и распределение жидкой воды на этой экзопланете. И все же ученые считают, что при определенных условиях жизнь на планете Проксима Центавра b может появиться и поддерживаться.

К настоящему времени в космосе обнаружено более пятидесяти каменистых планет, находящихся в обитаемых зонах своих звезд. Проксима Центавра b может быть ближайшей из них. Но это далеко не единственный мир, который человечество могло бы однажды назвать своим домом.

Наши первые шаги, безусловно, должны состоять в том, чтобы «децентрализовать» человечество, защитив его тем самым от вымирания. Это задачу можно решить путем строительства крупных космических станций или заселением Марса. И даже если мы завершим очень долгий процесс терраформирования Красной планеты, нам, вероятно, следует рассмотреть возможность отправки кораблей с роботизированным, управляемым ИИ оборудованием для добычи полезных ископаемых и 3D-принтерами к Проксима Центавра b. Там наши роботы должны начать работу по созданию города для первых колонистов. В которых наши потомки смогут продолжать жить и развивать человеческую цивилизацию.

открытие

На рисунке показаны изменения скорости звезды Проксима Центавра от Земли и к Земле с 1 января 2016 года. Регулярная картина изменения радиальных скоростей (красная и вертикальная ось) повторяется с периодом 11,2 дня — орбитальное время планета, показанная косвенно (синяя линия).

Первые признаки экзопланеты были обнаружены в 2013 году Микко Туоми путем анализа архивных данных наблюдений. Чтобы подтвердить это открытие, Европейская южная обсерватория ESO , возглавляемая Гиллемом Англада-Эскуде, в январе 2016 года начала проект под названием Pale Red Dot (намек на Pale Blue Dot ). Наконец, она нашла Проксиму Центавра b с помощью метода лучевых скоростей .

Измерения проводились в Чили с помощью спектрографа HARPS в обсерватории Ла Силья и спектрографа UVES в обсерватории Паранал . Открытие экзопланеты было опубликовано 24 августа 2016 года исследовательской группой из Университета Королевы Марии в Лондоне в журнале Nature , а новостной журнал Der Spiegel сообщил о (предполагаемом) открытии 12 августа 2016 года.

Поллукс (34 световых года)

Свет улетел от Поллукса в мае 1987 года. Именно в это время в СССР (да, он тогда еще существовал) состоялся первый успешный пуск уникальной сверхмощной ракеты «Энергия». Этот пуск стал символическим апофеозом советской системы. Он в очередной раз показал всему миру всю мощь Советского Союза. Который, к сожалению, вскоре после этого события перестал существовать. Кое-кто утверждает, что эти события связаны. Ну, мол, не потянули. Надорвались. Да нет, друзья. Дело тут не в этом. Просто любители джинсов и жвачек победили скромных строителей социализма. Которые оказались слабее, чем пришедшие к власти хапуги.

Да, было и еще одно интересное событие. Атомный ледокол «Сибирь» добрался до Северного полюса. Ура, товарищи! Слава советским морякам!

Ионные двигатели

Сейчас самой медленной и самой экономичной формой двигателя является ионный двигатель. Несколько десятилетий назад ионное движение считалось предметом научной фантастики. Но в последние года технологии поддержки ионных двигателей перешли от теории к практике, и весьма успешно. Миссия SMART-1 Европейского космического агентства — пример успешно проведенной миссии к Луне за 13 месяцев спирального движения от Земли.

SMART-1 использовала ионные двигатели на солнечной энергии, в которых электроэнергия собиралась солнечными батареями и использовалась для питания двигателей эффекта Холла. Чтобы доставить SMART-1 на Луну, потребовалось всего 82 килограмма ксенонового топлива. 1 килограмм ксенонового топлива обеспечивает дельта-V в 45 м/с. Это крайне эффективная форма движения, но далеко не самая быстрая.

Одной из первых миссий, использовавших технологию ионного двигателя, была миссия Deep Space 1 к комете Боррелли в 1998 году. DS1 тоже использовал ксеноновый ионный двигатель и потратил 81,5 кг топлива. За 20 месяцев тяги DS1 развил скорости в 56 000 км/ч на момент пролета кометы.

Ионные двигатели более экономичны, чем ракетные технологии, поскольку их тяга на единицу массы ракетного топлива (удельный импульс) намного выше. Но ионным двигателям нужно много времени, чтобы разогнать космический аппарат до существенных скоростей, и максимальная скорость зависит от топливной поддержки и объемов выработки электроэнергии.

Поэтому, если использовать ионное движение в миссии к Проксиме Центавра, двигатели должны иметь мощный источник энергии (ядерная энергия) и большие запасы топлива (хотя и меньше, чем обычные ракеты). Но если отталкиваться от допущения, что 81,5 кг ксенонового топлива переводится в 56 000 км/ч (и не будет никаких других форм движения), можно произвести расчеты.

На максимальной скорости в 56 000 км/ч Deep Space 1 потребовалось бы 81 000 лет, чтобы преодолеть 4,24 светового года между Землей и Проксимой Центавра. По времени это порядка 2700 поколений людей. Можно с уверенность сказать, что межпланетный ионный двигатель будет слишком медленным для пилотируемой межзвездной миссии.

Но если ионные двигатели будут крупнее и мощнее (то есть скорость исхода ионов будет значительно выше), если будет достаточно ракетного топлива, которого хватит на все 4,24 светового года, время путешествия значительно сократится. Но все равно останется значительно больше срока человеческой жизни.

Интересные факты

Земному космическому кораблю, отправившемуся в путешествие к нашей ближайшей соседке Проксима Центавра, понадобится 70 тыс. лет, чтобы до нее добраться.

Расстояние между составляющими двойной звезды Альфа Центавра равняется 22 угловым секундам. Они сливаются при взгляде невооруженным глазом, но разделяются при наблюдении даже в простейший телескоп. Угловое расстояние между Центавра A и B не постоянно. В 2010 году оно составляло 6,74 угловых секунд, а к 2016 сократится до 4. Максимальное значение будет наблюдаться в 2056 году.

Среди близких к нам звезд всего лишь 3 относятся к светилам первой величины: Сириус, Альфа Центавра и Процион, а ближайшая звезда к Земле и вовсе красный карлик.

Пространственное расположение соседей

Сириус

Яркая Звезда Неба. От Земли она располагается на дистанции 8.60 световых лет. Уютно расположилась в созвездии Большого Пса. Сириус движется медленно, постепенно увеличивая яркость. Такое положение продолжится ещё долго, 60000 лет. Лидерство по яркости Сириус не уступит ещё 210 000 лет. Величина -1.46. Она превышает в два раза по размерам Канопус, находящийся в созвездии Киля. Интересно, но Сириус по яркости чуть уступает Ригелю и Канопусу. Но так на первый взгляд не кажется, так как эти объекты находятся дальше.

Сириус кажется единой. Но в действительности – это двойная звёздная система. Белая Звезда СИРИУС А, а также карлик – СИРИУС В.


Карта расположения в пространстве всех звёздных систем в радиусе 14 св. лет Солнца. Включая Солнце, в этой области находятся 32 звёздные системы. Звёзды раскрашены в соответствии с их спектральным типом, эти цвета могут не совпадать с фактическими цветами звёзд. Двойные и тройные звёзды расположены в виде вертикальной колонки. Большинство звёзд этой карты не видны невооруженным глазом.

Ионное движение

Сейчас самой медленной и самой экономичной формой двигателя является ионный двигатель. Несколько десятилетий назад ионное движение считалось предметом научной фантастики. Но в последние года технологии поддержки ионных двигателей перешли от теории к практике, и весьма успешно. Миссия SMART-1 Европейского космического агентства — пример успешно проведенной миссии к Луне за 13 месяцев спирального движения от Земли.


SMART-1 использовала ионные двигатели на солнечной энергии, в которых электроэнергия собиралась солнечными батареями и использовалась для питания двигателей эффекта Холла. Чтобы доставить SMART-1 на Луну, потребовалось всего 82 килограмма ксенонового топлива. 1 килограмм ксенонового топлива обеспечивает дельта-V в 45 м/с. Это крайне эффективная форма движения, но далеко не самая быстрая.

Одной из первых миссий, использовавших технологию ионного двигателя, была миссия Deep Space 1 к комете Боррелли в 1998 году. DS1 тоже использовал ксеноновый ионный двигатель и потратил 81,5 кг топлива. За 20 месяцев тяги DS1 развил скорости в 56 000 км/ч на момент пролета кометы.

Ионные двигатели более экономичны, чем ракетные технологии, поскольку их тяга на единицу массы ракетного топлива (удельный импульс) намного выше. Но ионным двигателям нужно много времени, чтобы разогнать космический аппарат до существенных скоростей, и максимальная скорость зависит от топливной поддержки и объемов выработки электроэнергии.

Поэтому, если использовать ионное движение в миссии к Проксиме Центавра, двигатели должны иметь мощный источник энергии (ядерная энергия) и большие запасы топлива (хотя и меньше, чем обычные ракеты). Но если отталкиваться от допущения, что 81,5 кг ксенонового топлива переводится в 56 000 км/ч (и не будет никаких других форм движения), можно произвести расчеты.

На максимальной скорости в 56 000 км/ч Deep Space 1 потребовалось бы 81 000 лет, чтобы преодолеть 4,24 светового года между Землей и Проксимой Центавра. По времени это порядка 2700 поколений людей. Можно с уверенность сказать, что межпланетный ионный двигатель будет слишком медленным для пилотируемой межзвездной миссии.

Но если ионные двигатели будут крупнее и мощнее (то есть скорость исхода ионов будет значительно выше), если будет достаточно ракетного топлива, которого хватит на все 4,24 светового года, время путешествия значительно сократится. Но все равно останется значительно больше срока человеческой жизни.

Масштабы Вселенной

Видимая Вселенная имеет невероятный по размерам диаметр, который составляет миллиарды, а может быть и десятки миллиардов световых лет. Многие объекты, которые мы можем видеть с помощью телескопов, уже давно не существуют или выглядят совсем иначе, потому что свет до них шел невероятно долго.

Предлагаемая серия иллюстраций поможет вам представить хотя бы в общих чертах масштабы нашей Вселенной.

Солнечная система со своими крупнейшими объектами (планетами и карликовыми планетами)

Солнце (в центре) и ближайшие к нему звезды

Галактика Млечный путь с указанием группы ближайших от Солнечной системы звездных систем

Группа ближайших галактик, включающая более 50 галактик, число которых постоянно увеличивается по мере открытия новых.

Местное сверхскопление галактик (Сверхскопление Девы). Размер – около 200 миллионов световых лет

Группа сверхскоплений галактик

http://hi-news.ru/technology/kak-dolgo-letet-k-blizhajshej-zvezde-chast-pervaya-sovremennye-metody.htmlhttp://kosmoved.ru/blizhayshaya-zvezda.shtmlhttp://www.infoniac.ru/news/Kakoe-rasstoyanie-do-blizhaishei-galaktiki.html

Использование параллакса

Параллаксом называют смещение наблюдаемого объекта относительно удаленного фона при изменении положения наблюдателя. Зная расстояние между точками наблюдения (базис параллакса) и величину углового смещения объекта, несложно рассчитать расстояние до него. Чем меньше величина смещения, тем дальше находится объект. Межзвездные расстояния огромны, и, чтобы увеличить угол, используют максимально большой базис – для этого измеряют положение звезды в противоположных точках земной орбиты. Этот метод называется звездным годичным параллаксом.

Теперь легко понять, как измеряют расстояние до звезд методом годичного параллакса. Оно вычисляется как одна из сторон треугольника, образованного наблюдателем, Солнцем и удаленной звездой, и равно r = a/sin p, где: r – расстояние до звезды, а – расстояние от Земли до Солнца и p – годичный параллакс звезды. Поскольку параллаксы всех звезд меньше 1 угловой секунды (1’’), синус малого угла можно заменить величиной самого угла в радианной мере: sin p ≈ p’’/206265. Тогда получаем: r = a∙206265/p’’, или, в астрономических единицах, r = 206265/p’’.

Бетельгейзе (640 световых лет)

Здесь, друзья мои все не так просто. Потому что когда дело доходит до точного определения расстояния до этой звезды, мы попадаем в царство неопределенности. Параллакс Бетельгейзе настолько мал, что даже спутниковые измерения Hipparcos сомнительны. В настоящее время общепринятая цифра означает, что фотоны, попавшие сегодня в сетчатку нашего глаза, покинули звезду где-то во второй половине 14 века. И поскольку почти никого (кроме Николая Дроздова, дай Бог ему здоровья) из нас тогда еще не было, приходится опираться на исторические события. Итак, что же происходило в те славные деньки на нашей планете? Когда свет покинул поверхность Бетельгейзе, китайская династия Мин вступила в свои права. Ацтеки стали расселяться по территории нынешней Мексики. А в Европе царило мрачное средневековье…

Расстояние между галактиками

Галактика Большое Магелланово Облако – ближайшая от нас карликовая галактика, а вот крупной по размерам галактикой — нашей соседкой считается спиральная галактика Андромеды, которая находится от нас на расстоянии примерно 2,52 миллиона световых лет.

Расстояние между нашей галактикой и галактикой Андромеды постепенно сокращается. Они приближаются друг к другу со скоростью примерно 100-140 километров в секунду, хотя и встретятся очень нескоро, а точнее, через 3-4 миллиарда лет.

Возможно, именно так будет выглядеть ночное небо для земного наблюдателя через несколько миллиардов лет

Расстояния между галактиками, таким образом, могут быть самыми разными на разных этапах времени, так как они постоянно находятся в динамике.