Назначение, геометрические формы крыла

Принцип действия


Дым показывает движение воздуха, обусловленное взаимодействием крыла с воздухом. Подъёмная сила крыла создаётся за счёт разницы давлений воздуха на нижней и верхней поверхностях. Давление же воздуха зависит от распределения скоростей воздушных потоков вблизи этих поверхностей.

Одним из распространённых объяснений принципа действия крыла является ударная модель Ньютона: частицы воздуха, сталкиваясь с нижней поверхностью крыла, стоящего под углом к потоку, упруго отскакивают вниз («скос потока»), согласно третьему закону Ньютона, толкая крыло вверх. Данная упрощённая модель учитывает закон сохранения импульса, но полностью пренебрегает обтеканием верхней поверхности крыла, вследствие чего она даёт заниженную величину подъёмной силы.

В другой распространённой, но неверной модели возникновение подъёмной силы объясняется разностью давлений на верхней и нижней сторонах профиля, возникающей согласно закону Бернулли: на нижней поверхности крыла скорость протекания воздуха оказывается ниже, чем на верхней, поэтому подъёмная сила крыла направлена снизу вверх. Обычно рассматривается крыло с плоско-выпуклым профилем: нижняя поверхность плоская, верхняя — выпуклая. Набегающий поток разделяется крылом на две части — верхнюю и нижнюю, — при этом, вследствие выпуклости крыла, верхняя часть потока должна пройти больший путь, нежели нижняя. Для обеспечения неразрывности потока скорость воздуха над крылом должна быть больше, чем под ним, из чего следует, что давление на верхней стороне профиля крыла ниже, чем на нижней; этой разностью давлений обуславливается подъёмная сила. Однако данная модель не объясняет возникновение подъёмной силы на двояковыпуклых симметричных или на вогнуто-выпуклых профилях, когда потоки сверху и снизу проходят одинаковое расстояние.

Для устранения этих недостатков Н. Е. Жуковский ввёл понятие циркуляции скорости потока; в 1904 году им была сформулирована теорема Жуковского. Циркуляция скорости позволяет учесть скос потока и получать значительно более точные результаты при расчётах.


Положение закрылков (сверху вниз): 1) Наибольшая эффективность (набор высоты, горизонтальный полёт, снижение) 2) Наибольшая площадь крыла (взлёт) 3) Наибольшая подъёмная сила, высокое сопротивление (заход на посадку) 4) Наибольшее сопротивление, уменьшенная подъёмная сила (после посадки)

Одним из главных недостатков вышеприведённых объяснений является то, что они не учитывают вязкость воздуха, то есть перенос энергии и импульса между отдельными слоями потока (что и является причиной циркуляции). Существенное влияние на крыло может оказать поверхность земли, «отражающая» возмущения потока, вызванные крылом, и возвращающая часть импульса обратно (экранный эффект).

Также в приведённых объяснениях не раскрывается механизм передачи энергии от крыла к потоку, то есть совершения работы самим крылом. Хотя верхняя часть воздушного потока действительно имеет повышенную скорость, геометрическая длина пути не имеет к этому отношения — это вызвано взаимодействием слоёв неподвижного и подвижного воздуха и верхней поверхности крыла. Поток воздуха, следующий вдоль верхней поверхности крыла, «прилипает» к ней и старается следовать вдоль этой поверхности даже после точки перегиба профиля (эффект Коанда). Благодаря поступательному движению, крыло совершает работу по разгону этой части потока. Достигнув точки отрыва у задней кромки, воздух продолжает своё движение вниз по инерции вместе с массой, отклонённой нижней поверхностью крыла, что в сумме вызывает скос потока и возникновение реактивного импульса. Вертикальная часть этого импульса и вызывает подъёмную силу, уравновешивающую силу тяжести, горизонтальная же часть уравновешивается лобовым сопротивлением.

На самом деле, обтекание крыла является очень сложным трёхмерным нелинейным, и зачастую нестационарным, процессом. Подъёмная сила крыла зависит от его площади, профиля, формы в плане, а также от угла атаки, скорости и плотности потока (числа Маха) и от целого ряда других факторов.

Примечания

  1. ↑ . Проверено 1 июня 2010. 10 февраля 2012 года.
  2. ↑  (недоступная ссылка — ). Проверено 1 июня 2010. 2 сентября 2009 года.
  3. ↑ . Проверено 1 июня 2010. 10 февраля 2012 года.
  4. ↑ Предкрылок // Авиация. Энциклопедия / Гл. ред. Г. П. Свищев. — Большая Российская энциклопедия, 1994. — С. 445. — 736 с. — ISBN 5-85270-086-X.
  5. ↑ . Проверено 1 июня 2010. 10 февраля 2012 года.
Компоненты летательного аппарата (ЛА)
Конструкция планера ЛА
  • Аварийная авиационная турбина
  • V-образное оперение
  • ВСУ
  • Гидравлическая система
  • Гаргрот
  • Гермокабина
  • Гермошпангоут
  • Гондола
  • Головной обтекатель
  • Стабилизатор
  • Задняя кромка крыла
  • Зализ
  • Кабина
  • Киль
  • Кессон
  • Корень крыла
  • Крыло
  • Лонжерон
  • Мотогондола
  • Нервюра
  • Обшивка
  • Носок крыла
  • Оперение
  • Подкос
  • Расчалка
  • Стабилизатор
  • Планер летательного аппарата
  • Противообледенительная система
  • Противопожарное оборудование
  • Рампа
  • Система отбора воздуха
  • Система кондиционирования
  • Стойка
  • Стрингер
  • Технический отсек
  • Фонарь кабины
  • Фюзеляж
  • Центроплан
Элементы управления полётом
  • NOTAR
  • Автомат перекоса
  • Аэродинамический тормоз
  • Боковая ручка
  • Вибросигнализатор штурвала
  • Крутка крыла
  • Руль высоты
  • Руль направления
  • Рулевой винт
  • Ручка управления самолётом
  • Сервокомпенсатор
  • Спойлер (интерцептор)
  • Спойлерон
  • Стопор рулей
  • Толкатель штурвальной колонки
  • Триммер
  • Флаперон
  • Фенестрон
  • ЦПГО
  • Штурвал
  • Элевоны
  • Элероны
Аэродинамика имеханизация крыла
  • ACTE
  • Адаптивное управляемое крыло
  • Активное аэроупругое крыло
  • Аэродинамический гребень
  • Бесхвостка
  • Вибрирующий предкрылок
  • Гребень крыла
  • Законцовка крыла
  • Кольцевое крыло
  • Крыло изменяемой стреловидности
  • Крыло обратной стреловидности
  • Наплыв крыла
  • Пластинчатый турбулизатор
  • Предкрылки
  • Роторный предкрылок
  • Утка
  • Щиток Крюгера
Бортовое радиоэлектронноеоборудование (БРЭО)
  • ACAS
  • GPS
  • БРЛС
  • Доплеровский измеритель скорости и сноса
  • TCAS
  • Радиовысотомер
  • Радиодальномер
  • Радиокомпас
  • Радиотехническая система ближней навигации
  • Речевой информатор
  • Самолётный радиолокационный ответчик
  • Самолётное переговорное устройство
  • GPWS
  • Станция предупреждения об облучении
Авиационное оборудование (АО)
  • EFIS
  • Автопилот
  • Авиационный электропривод
  • Автомат углов атаки и сигнализации перегрузок
  • Автомат тяги
  • АБСУ
  • INS
  • Авиагоризонт
  • БРЛС
  • Бортовая СЭС ЛА
  • Вариометр
  • Высотомер
  • Гировертикаль
  • Датчик угловой скорости
  • Демпфер рыскания
  • ИЛС
  • Индикатор отклонения курса
  • Кислородное оборудование
  • Компас
  • Корректор высоты
  • Курсовертикаль
  • Командно-пилотажный прибор
  • Навигационные огни
  • Плановый навигационный прибор
  • Приборная доска
  • Приёмник воздушного давления
  • Бортовые огни
  • Система воздушных сигналов
  • Система аварийной подачи кислорода
  • Система управления воздухозаборником
  • Система траекторного управления
  • Сигнальное табло
  • Система управления полётом самолёта
  • Стеклянная кабина
  • Сигнализатор обледенения
  • Указатель курса
  • Указатель поворота и скольжения
  • Указатель скорости
  • Система сигнализации пожара в авиации
  • ЭДСУ
  • FADEC
Силовая установка итопливная система (СУ и ТС)
  • EICAS
  • Воздушный винт
  • Кок
  • Кольцо Тауненда
  • Конус воздухозаборника
  • Обтекатель NACA
  • Несущий винт
  • ПАЗ
  • Пластинчатый отсекатель
  • Подвесной топливный бак
  • Привод постоянных оборотов
  • Реверс
  • РУД
  • Сверхзвуковой воздухозаборник
  • Топливный бак
  • Топливная система летательного аппарата
  • Управление вектором тяги
  • Форсажная камера
Взлётно-посадочные устройства
  • Автомат торможения
  • Гидравлический амортизатор
  • Демпфер шимми
  • Закрылок
  • Закрылок Гоуджа
  • Закрылок со сдувом пограничного слоя
  • Парашютно-тормозная установка
  • Тормозной гак
  • Тормоз колеса
  • Шасси
Системы аварийногопокидания и спасения (САПС)
  • Катапультируемое кресло
  • Спасательная капсула
Системы авиационноговооружения и обороны (АВ)
  • Бомбодержатель
  • Бомбовый прицел
  • Грузоотсек
  • Узел подвески вооружения
  • Средства инфракрасного противодействия
Бытовое оборудование
  • Бортовой туалет
  • Бортовой трап
  • Развлекательная система
Средства объективного контроля
  • Аэрофотоаппарат
  • Бортовой самописец
  • Бортовые средства объективного контроля
  • Статоскоп
  • Фотопулемёт
Функционально связанныесистемы ЛА

Эта страница в последний раз была отредактирована 18 октября 2018 в 00:20.

Внешние формы и нагрузки крыла

Назначение крыла и требования к нему. Крыло предназначено для создания аэродинамической подъемной силы. Кроме этого основного назначения крыло обеспечивает поперечную устойчивость и с помощью расположенных на нем элеронов поперечную управляемость. Крыло снабжается механизацией, основным назначением которой является улучшение взлетно-посадочных характеристик самолета.

Внутренний объем крыла часто используется для размещения топливных баков и некоторых агрегатов оборудования. На крыле могут размещаться двигатели, шасси, установки вооружения. Кроме общих требований к крылу в соответствии с назначением предъявляются требования возможно меньшего сопротивления в полете, наибольшего приращения коэффициента подъемной силы при применении механизации и обеспечения характеристик устойчивости и управляемости на всех режимах полета.

Внешние формы крыла Аэродинамические, массовые и в определенной степени технологические характеристики крыла зависят от его внешних форм и геометрических параметров. Внешние формы крыла определяются формой в плане, формой поперечного сечения и формой в виде спереди. Большое влияние на характеристики крыла оказывает удлинение и сужение.

С уменьшением удлинения при полете на дозвуковых скоростях возрастает сопротивление самолета за счет индуктивного сопротивления где к — коэффициент, учитывающий влияние формы крыла в плане. Доля индуктивного сопротивления в общем балансе сопротивления уменьшается с ростом скорости из-за уменьшения потребных. Особенно сильно уменьшается доля индуктивного сопротивления на сверхзвуковых скоростях.

Здесь основную часть сопротивления составляет волновое. Для уменьшения его величины применяют крылья малых удлинений. Масса конструкции снижается и с увеличением сужения, так как при этом также уменьшается изгибающий момент и увеличиваются хорды в корневых сечениях крыла. Увеличение сужения повышает и эффективность механизации, так как ее влияние распространяется на большую часть площади крыла.

Но увеличение сужения ухудшает характеристики устойчивости и управляемости из-за перемещения места начала срыва потока к концевым сечениям крыла. Сужение оказывает влияние на величину максимального значения коэффициента подъемной силы. Прямоугольные и трапециевидные крылья носят название прямых. Прямоугольное крало обеспечивает хорошую устойчивость и управляемость при полете на больших углах атаки.

У прямоугольного крыла максимальное значение коэффициента подъемной силы получается на середине. полуразмаха, и даже при наступлении срыва потока в этой зоне концы крыла еще работают в до критической области, благодаря чему обеспечивается поперечная устойчивость и сохраняется эффективность элеронов. Кроме того, прямоугольное крыло проще в изготовлении.

В настоящее время прямоугольные крылья применяются лишь на самолетах, у которых требование безопасности полета на малых скоростях, обеспечиваемое в первую-очередь сохранением управляемости, является одним из главных (самолеты первоначального обучения, сельскохозяйственной авиации и т.п.). Для уменьшения массы такие крылья делаются подкосными или в виде коробки крыльев биплана.

Метод расчета характеристик

В последнее время расчеты характеристик крыла определенного профиля осуществляются с использованием ЭВМ, которые способны проводить многофакторное моделирование поведения крыла в разных условиях. Но самым надежным способом являются естественные испытания, проводимые на специальных стендах. Отдельные сотрудники «старой школы» могут продолжать делать это вручную. Звучит метод просто угрожающе: «полный расчет крыла с использованием интегродифференциальных уравнений относительно неизвестной циркуляции». Суть метода заключается в представлении циркуляции воздушного потока вокруг крыла в виде тригонометрических рядов и в поиске коэффициентов этих рядов, которые удовлетворяют граничным условиям. Работа эта очень трудоемкая и все равно дает лишь приблизительные характеристики профиля крыла самолета.

Подъёмная сила крыла самолета

У людей, начинающих свое знакомство с авиацией или уже продолжающих его может назреть вопрос, раз все всё знали, были выдающиеся открытии и умы, но самолет смог взлететь только в 1903 году, в чем же дело? А дело вот в чем: вполне можно было бы сделать первый полет и раньше, но долгое время ученые были запутаны, как высчитать подъемную силу и какое должно быть крыло самолета, его длина?

Согласно классической физике и согласно законам Ньютона подъемная сила была пропорциональна углу атаки во второй степени, что приводило к выводу о том, что невозможно сделать крыло малого размаха с хорошими несущими характеристиками. Мы можем представить себе обычную параболу, у=х2  и получаем, что, например, для подъемной силы равной 2 нужно достичь угла атаки в 4, а для хорошего полета необходимо подъемная сила и в 4, 5, 6… сложно иногда даже будет подсчитать угол атаки, а если он еще и окажется в критической зоне… 

https://youtube.com/watch?v=HWZkRyz-2b8

  Эта путаница продолжалась вплоть до конца 19 века, аж только после многих экспериментов Бернулли и многих других ученых было установлено, что эта зависимость – прямолинейная (!), а уже базируясь на таких выводах можно было строить крыло малого размаха с удовлетворительной подъемной силой. Первыми это сделали братья Райт.

Avia.pro

Другие статьи

Высота полета самолета

Многих интересует вопрос: какая высота полета авиалайнеров? Надо сказать, что и в этом случае конкретных данных нет. Высота может быть разной. Если же брать средние показатели, то пассажирские лайнеры летают на высоте 5—10 тыс. метров. Крупные пассажирские самолеты летают с большей высотой — 9—13 тыс. метров. Если самолет набирает высоту выше 12 тыс. метров, то он начинает проваливаться. Из-за того, что воздух разреженный, отсутствует нормальная сила подъема и имеется недостаток кислорода. Именно поэтому не стоит взлетать так высоко, поскольку есть угроза авиакатастрофы. Зачастую самолеты выше 9 тыс. метров не поднимаются. Примечательно, что и чересчур низкая высота негативно сказывается на полете. Например, ниже 5 тыс. метров нельзя летать, так как есть угроза недостатка кислорода, в результате чего снижается мощность двигателей.

Закрылки самолета. Основные виды.

Закрылки – первая из придуманных разновидностей механизации крыла, они же и наиболее эффективны. Они широко применялись еще до Второй Мировой войны, а на ее протяжении и после их конструкция была доработана и, также, были изобретены новые виды закрылок. Основными характеристиками, которые указывают на то, что это закрылок действительно является им – его расположение и манипуляции, которые с ним происходят. Закрылки всегда находятся на задней кромке крыла и всегда опускаются вниз, и, к тому же, могут выдвигаться назад. При опускании закрылка увеличивается кривизна крыла, при его выдвижении – площадь. А раз подъемная сила крыла прямо пропорциональна его площади и коэффициенту подъемной силы, то если обе величины увеличиваются, закрылок выполняет свою функцию наиболее эффективно. По  своему устройству и манипуляциям закрылки делятся на:

  • простые закрылки (самый первый и самый простой вид закрылок)
  • щитовые закрылки
  • щелевые закрылки
  • закрылки Фаулера (наиболее эффективный и наиболее широко применяемый в гражданской авиации вид закрылок)

Каким образом функционируют все вышеперечисленные закрылки показано на схеме. Простой закрылок, как видно из схемы, просто отклоняемая вниз задняя кромка крыла. Таким образом, кривизна крыла увеличивается, однако  область низкого давления над крылом уменьшается, потому простые закрылки менее эффективны, чем щитовые, верхняя кромка которых не отклоняется и область низкого давления не теряет в размерах.

Щелевой закрылок получил свое название по причине образуемой им щели после отклонения. Эта щель позволяет проходить воздушной струе к области низкого давления и направлена она таким образом, чтобы предотвращать срыв потока (процесс, во время которого величина подъемной силы резко падает), придавая ему дополнительную энергию.

Закрылок Фоулера выдвигается назад и вниз, чем увеличивает и площадь и кривизну крыла. Как правило, он сконструирован таким образом, чтобы при его выдвижении еще и создавалась щель, или две, или даже три. Соответственно он выполняет свою функцию наиболее эффективно и может давать прирост в подъемной силе до 100%.

Предкрылки. Основные функции. 

Предкрылки – отклоняемые поверхности на передней кромке крыла. По своему строению и функциям они схожи с закрылками Фаулера – отклоняются вперед и вниз, увеличивая кривизну и немного площадь, образуют щель, для прохода воздушного потока к верхней кромке крыла, чем способствуют увеличению подъемной силы. Предкрылки, просто отклоняемые вниз, которые не создают щели называются отклоняемыми носками и только увеличивают кривизну крыла.

Спойлеры и их задачи. 

Спойлеры. Перед рассмотрением спойлеров, следует заметить, что при создании дополнительной подъемной силы всеми вышеперечисленными устройствами создается дополнительное лобовое сопротивление, что ведет к понижению скорости. Но это происходит как следствие повышения подъемной силы, в то время как задача спойлеров – конкретно значительное повышение лобового сопротивления и прижимание самолета к земле после касания. Соответственно это единственное устройство механизации крыла, которое находится на верхней его поверхности и отклоняется вверх, чем и создается прижимная сила.

А зачем же нужно увеличивать подъемную силу? Вообще требуется не столько увеличение подъемной силы, сколько уменьшение скорости самолета, по крайней мере в гражданской авиации. А поскольку эти две величины непосредственно связаны, потому и происходит одно за счет другого.

Уменьшение скорости необходимо при взлете и посадке для обеспечения большей безопасности и уменьшения длины взлетной полосы. Кроме того, боевым самолетам довольно часто при выполнении того или иного маневра необходимо очень быстро увеличить либо уменьшить подъемную силу, для чего и служит механизация крыла.

Коэффициент подъёмной силы[править | править код]

Коэффициент подъёмной силы — безразмерная величина, характеризующая подъёмную силу крыла определённого профиля при известном угле атаки. Коэффициент определяется экспериментальным путём в аэродинамической трубе, либо по теореме Жуковского.

Джон Смитон уже в XVIII веке рассчитал поправочный коэффициент подъёмной силы (далее Коэффициент Смитона, в формуле не указан) для формулы расчёта подъёмной силы. Формула имеет вид:

Y = C y ρ V 2 2 S {displaystyle Y=C_{y}{frac {rho V^{2}}{2}}S}

где:

Y {displaystyle Y}  — подъёмная сила (Н) C y {displaystyle C_{y}}  — коэффициент подъёмной силы, зависящий от угла атаки (получается опытным путём для разных профилей крыла) ρ {displaystyle rho }  — плотность воздуха на высоте полёта (кг/м³) V {displaystyle V}  — скорость набегающего потока (м/с) S {displaystyle S}  — характерная площадь (м²)

Формула для расчета лобового сопротивления сходна с вышеприведенной, за исключением того, что используется коэффициент лобового сопротивления C x {displaystyle C_{x}} вместо коэффициента подъёмной силы C y {displaystyle C_{y}} .

Поправочный коэффициент, значение которого по расчётам Смитона составляло 1.005, использовался более 100 лет, и только опыты Братьев Райт, в ходе которых они обнаружили, что подъёмная сила, действующая на планёры, была слабее расчётной, позволили уточнить «коэффициент Смитона» до значения 1.0033.

При расчётах по этой формуле важно не путать весовую и массовую плотность воздуха. Весовая плотность при стандартных атмосферных условиях (на уровне земли при температуре +15 °С) равна ρ {displaystyle rho } =1.225 кг/м3

Но в аэродинамических расчётах часто используют массовую плотность воздуха, которая равна 0.125 кГ*с2/м4. В этом случае подъёмная сила Y получается не в ньютонах (Н), а в килограммах (кг). В книгах по аэродинамике не всегда имеются уточнения, о какой плотности и размерности подъёмной силы идёт речь, поэтому в спорных ситуациях нужно проверять формулы, сокращая единицы измерения.

Воздушные потоки при движении крыла

Выясним возникновение подъемной силы, действующей на крыло самолета. Будем считать, что крыло представляет собой несимметричное тело, которое обдувается горизонтальным потоком воздуха (рис. 1).

Рис. 1

Расположим крыло относительно потока так, чтобы плоскость, проведенная вдоль крыла через наиболее удаленные точки его профиля (точки aaa и bbb), образовывала с направлением потока угол ααα, который называют углом атаки. Величину ababab называют хордой крыла. Поскольку в пограничном слое скорости частиц воздуха увеличиваются при удалении об поверхности крыла, то в этом слое движение воздуха будет вихревым. Над крылом будет происходить вращение вихрей по часовой стрелке, а под крылом – против часовой стрелки. Предположим, что под крылом самолета оторвалась какая-то масса воздуха, которую относит потоком в виде вихрей. Их момент импульса отличен от нуля. В системе крыло–воздух внутренние силы взаимодействия, то есть силы вязкого трения и силы давления, не могут изменить общий момент импульса. Если он к образованию вихрей равен нулю, то, по закону сохранения момента импульса, после образования вихрей момент импульса не должен измениться. Из этого следует, что одновременно с образованием вихрей должна возникнуть циркуляция воздуха вокруг крыла в направлении, противоположном направлению вращения вихрей. Момент импульса циркуляции воздуха равен по величине моменту импульса вихрей, но противоположен по направлению. При этом суммарный момент импульса всей системы равен нулю.

На рис. 2 изображен профиль крыла, расположенного в потоке воздуха. Линии течения этого потока изображены сплошными линиями, а циркуляционные потоки – штриховой линией.

Рис. 2

Итак, в результате действия сил вязкости при несимметричной обтекании воздухом крыла вокруг него возникает циркуляция воздуха. Ее называют присоединенным вихрем. Этот циркуляционный поток добавляется к потоку воздуха навстречу крылу, в результате чего скорость воздуха над крылом будет больше, чем под крылом. В циркуляционном потоке частицы газа находятся не во вращательном движении, а двигаются условно поступательно вдоль замкнутых траекторий.

Основные параметры, характеризующие форму крыла. Профилированное крыло.

Существует бесчисленное множество форм крыльев. Это объясняется тем, что каждое крыло рассчитывается под совершенно определенные режимы полета, скорости, высоты. Поэтому выделить какую-то оптимальную или «наилучшую» форму невозможно. Каждое хорошо работает в «своей» области применения. Обычно форму крыла определяют, задавая профиль, вид в плане, угол крутки и угол поперечного V. Разберем эти понятия.

Профиль крыла — форма (контур) сечения крыла плоскостью, параллельной плоскости симметрии крыла (рис. 12).

Рис. 12. Профиль крыла

Существует огромное количество видов профилей крыла, отвечающих тем или иным режимам полёта. Вот, к примеру (рис. 13):

Рис. 13. Виды профилей крыла: 1 — вогнуто-выпуклый; 2 — плоско-выпуклый;  3 — двояковыпуклый несимметричный; 4 — двояковыпуклый симметричный; 5 — S-oбразный (используется в конструкции дельтаплана); 6 — чечевицеобразный; 7 — ромбический; 8 — клиновидный. Стрелкой показано направление полёта.

Описывая форму профиля, применяют прямоугольную систему координат с началом в передней точке хорды. Ось X направляют по хорде от передней точки к задней, а ось Y — вверх (от нижней границы профиля к верхней). Границы профиля задаются по точкам с помощью таблицы или формулами. Контур профиля строят также, задавая среднюю линию и распределение толщины профиля вдоль хорды.

Основными параметрами, характеризующими форму профиля крыла, являются (рис. 11):

Относительная толщина профиля (С) — отношение максимальной толщины профиля Сmax к его хорде b, измеряемое в процентах.

Хорда профиля — отрезок, соединяющий наиболее удаленные точки профиля. Длину хорды обозначают через b (как у нас на рисунках 11 и 13).

Координата Хс максимальной толщины профиля  измеряется в процентах от хорды, считая от носка профиля:

Максимальная относительная кривизна (вогнутость) профиля ( f )  — отношение максимальной стрелы прогиба средней линии профиля  fmax  к его хорде, измеряемое в процентах:

Иначе говоря, кривизна профиля – это кривизна его средний линии. Кривизну профиля принято характеризовать вогнутостью профиля, определяемой стрелой прогиба средний линии профиля.

Стрелой перегиба называется максимальное отклонение средней линии профиля от его хорды.

Средней линией профиля называется линия, проходящая через середины отрезков, соединяющих точки с одинаковой координатой X на верхнем и нижнем обводах профиля.

Кривизна профиля считается положительной, если средняя линия лежит выше хорды. При этом, вогнутость профиля может изменяться по хорде и даже менять знак для профилей с S-образной средний линией (как у наших дельтапланов).