Как отличить медь от других металлов

Фазы горения

По сути, деревья — концентрат энергии излучения Солнца. Листья растений работают как небольшие солнечные панели, поглощающие световую энергию, чтобы с её помощью преобразовать воду, углекислый газ и минералы в органические вещества. Горение можно рассматривать как процесс обратный фотосинтезу. Поджигание дров освобождает накопленную за время жизни растения энергию, реализуя её в виде высокой температуры огня в костре. Горение древесины проходит три фазы:

  1. Испарение влаги под воздействием температуры открытого пламени. Любая древесина содержит влагу, после поджигания вода в ней закипает и испаряется через трещины. Поскольку значительная часть подводимого тепла затрачивается на испарение, успешное поджигание либо требует сухих дров, либо большого количества тепла. Первая фаза завершается при достижении древесиной 100°C.
  2. Повышение температуры и газификация древесины. При 150 °C дерево начинает разлагаться на угли и летучие горючие вещества, оптимальная температура для этого процесса — от 280°C. Воспламенение газов происходит при температурах между 260 и 315°C с дальнейшим заметным пламенным горением. При 700°C и выше начинается процесс выделения и сжигания газов с высокой теплотворной способностью. Фаза заканчивается с прекращением образования летучих горючих веществ.
  3. Углеродное горение. После выделения первичных и вторичных газов остаются углеродные цепи и несгораемые вещества. Углерод, или древесный уголь, горит долго и без видимого пламени. Стадия заканчивается полным сгоранием твёрдых веществ в древесине до негорючей золы.

Цветовая характеристика

Излучения различных вызывается электронными переходами. Их еще называют тепловыми. Так, в результате горения углеводородного компонента в воздушной среде, синее пламя обусловлено выделением соединения H-C. А при излучении частичек C-C, факел окрашивается в оранжево-красный цвет.

Трудно рассмотреть строение пламени, химия которого включает соединения воды, углекислого и угарного газа, связь OH. Его языки практически бесцветны, так как вышеуказанные частички при горении выделяют излучения ультрафиолетового и инфракрасного спектра.

Окраска пламени взаимосвязана с температурными показателями, с наличием в нем ионных частиц, которые относятся к определенному эмиссионному или оптическому спектру. Так, горение некоторых элементов приводит к изменению цвета огня в горелке. Отличия в окрашивании факела связаны с расположением элементов в разных группах системы периодической.

Огонь на наличие излучений, относящихся к видимому спектру, изучают спектроскопом. При этом было установлено, что простые вещества из общей подгруппы оказывают и подобное окрашивание пламени. Для наглядности используют горение натрия в качестве теста на данный металл. При внесении его в пламя, языки становятся ярко-желтыми. На основании цветовых характеристик выделяют натриевую линию в эмиссионном спектре.

Для характерно свойство быстрого возбуждения светового излучения атомарных частиц. При внесении труднолетучих соединений таких элементов в огонь горелки Бунзена происходит его окрашивание.

Спектроскопическое исследование показывает характерные линии в области, видимой для глаза человека. Быстрота возбуждения светового излучения и простое спектральное строение тесно взаимосвязаны с высокой электроположительной характеристикой данных металлов.

От чего зависит строение пламени?

Оно мерцает разными цветами, в то время, когда фитиль сгорает, проходя сквозь тающий воск. Огонь требует доступ кислорода. Когда свеча горит, в середину пламени, возле дна, много кислорода не попадает. Поэтому оно выглядит более темным. Но вершина и бока получают много воздуха, поэтому там пламя очень яркое. Оно нагревается более чем 1370 градусов по Цельсию, это делает пламя свечи в основном желтого цвета.

А в камине или в костре на пикнике можно увидеть даже больше цветов. Дровяной огонь горит при температуре ниже, чем свеча. Поэтому он выглядит больше оранжевым, чем желтым. Некоторые частицы углерода в огне очень горячие и придают ему желтизны. Минералы и металлы, такие как кальций, натрий, медь, нагреты до высоких температур, придают огню разнообразные цвета.

История пламени

Огонь сопровождал человека еще с первобытного строя. В пещере горел огонь, утепляя и освещая ее, а отправляясь за добычей, охотники брали с собой горящие головни. На смену им пришли просмоленные факелы — палки. С помощью них освещались темные и холодные замки феодалов, а громадные камины отапливали залы. В античные времена греки использовали масляные лампы – глиняные чайнички с маслом. В 10-11 веках стали создавать восковые и сальные свечи.

В русской избе до многие столетия горела лучина, а когда в середине 19 века из нефти начали добывать керосин, в обиход вошли керосиновые лампы, позже — газовые горелки. Ученые и сейчас занимаются изучением строения пламени, открывая новые его возможности.

Горение спиртовки

Для химических экспериментов часто используют небольшие резервуары со спиртом. Их называют спиртовками. Фитиль горелки пропитывается залитым через отверстие жидким топливом. Этому способствует давление капиллярное. При достижении свободной верхушки фитиля, спирт начинает испаряться. В парообразном состоянии он поджигается и горит при температуре не более 900 °C.

Пламя спиртовки имеет обычную форму, оно практически бесцветное, с небольшим оттенком голубого. Его зоны не так четко видны, как у свечки.

У названной в честь ученого Бартеля, начало огня располагается над калильной сеткой горелки. Такое заглубление пламени приводит к уменьшению внутреннего темного конуса, а из отверстия выходит средний участок, который считается самым горячим.

Огненный художник

При слове «костёр» вспыхивают не менее ярко ностальгические воспоминания: дым костра, создающий доверительную обстановку; красные и желтые огни, летящие к ультрамариновому небу; переливы язычков с голубого до рубиново-красного цвета; багровые остывающие угли, в которых печётся «пионерская» картошка.

Изменяющийся колер пылающего дерева сообщает о колебаниях температуры огня в костре. Тление дерева (потемнение) начинается со 150°. Возгорание (задымление) происходит в интервале 250-300°. При одинаковом поступлении кислорода породы при несовпадающих температурах. Соответственно, градус костра тоже будет отличаться. Берёза горит при 800 градусах, ольха — при 522°, а ясень и бук — при 1040°.

Но цвет огня также определяется химическим составом горящего вещества. Желтый и оранжевый вносят соли натрия. Химический состав целлюлозы содержит и соли натрия, и соли калия, придающие пылающим углям дерева красный оттенок. Романтические в древесном костре возникают из-за недостатка кислорода, когда вместо СО 2 образуется СО — угарный газ.

Энтузиасты научных опытов измеряют температуру огня в костре прибором под названием пирометр. Изготовляют три типа пирометров: оптические, радиационные, спектральные. Это бесконтактные приборы, разрешающие оценивать мощность теплового излучения.

Памятка киевлянам — что означает оранжевое пламя газовой плиты

В редакцию Русской Весны приходят сообщения жителей Киева о том, что бытовой газ горит необычным цветом — оранжевым.

Что это означает и каковы должны быть меры предосторожности в связи с этим явлением, мы рассказываем в специально подготовленной памятке. Нет, это не происки коварного ГАЗПРОМА

И даже не последствия непрофессионализма администрации Кличко. Однако пламя газа на вашей плите действительно может предупредить о возможной опасности. Если оно вдруг стало оранжевым вместо привычного голубого, конфорки, возможно, нуждаются в чистке или переустановке. Оранжевый цвет пламени предупреждает о неправильном сгорании

Нет, это не происки коварного ГАЗПРОМА. И даже не последствия непрофессионализма администрации Кличко. Однако пламя газа на вашей плите действительно может предупредить о возможной опасности. Если оно вдруг стало оранжевым вместо привычного голубого, конфорки, возможно, нуждаются в чистке или переустановке. Оранжевый цвет пламени предупреждает о неправильном сгорании

. что в свою очередь может стать причиной выброса опасного количества угарного газа.

Принципы сгорания

Для полного и безопасного сгорания газа плита должна получать достаточное количество горючего, смешанного в нужных пропорциях с кислородом.

В результате сгорания этой смеси вырабатывается углекислый газ или CO2. Когда смесь газа и кислорода не сбалансирована, сгорание не происходит полностью, а побочным его продуктом становится угарный газ или CO. Цвет пламени пропорционален теплоинтенсивности — чем выше температура пламени, тем правильней рассчитана пропорция газа и кислорода в смеси, тем полнее сгорание газа, а пламя голубое. Когда смесь газа и кислорода не сбалансирована, в пламени возникают мешки более низких температур, так как горючее не сгорает полностью. Пламя становится оранжевым.

Оранжевое пламя

Дисбаланс смеси горючее-кислород может возникнуть по ряду причин. Отверстия газовых горелок могут забиться сажей и тогда горючее подается к горелке неравномерно. Когда пламя сжигает сажу, видимое температурное излучение становится оранжевым. Также может быть установлен неподходящий тип горелок для газа, который вы используете жидкий пропан и природный газ имеют разные требования к соотношению воздух-топливо. Воздушная заслонка может быть неправильно подогнана по размеру или может быть повреждена, не давая нужному количеству кислорода смешаться с газом. При недостаточной подаче кислорода лишь часть газа превращается в голубое пламя высокой температуры, остаток же уходит в оранжевое пламя более низких температур.

Угарный газ — побочный продукт сгорания. Газовые плиты, которые производят голубое пламя, как правило, выбрасывают в воздух безопасные количества углекислого газа. Оранжевое пламя — опасный признак того, что в концентрация угарного газа в воздухе повышена. Отравление угарным газом имеет симптомы схожие с симптомами гриппа: головная боль, головокружение и тошнота. В крайних случаях угарный газ оправдывает своё имя тихого убийцы, обманывая ничего не подозревающих жертв отсутствием цвета и запаха. Неправильно установленные и не вовремя ремонтируемые газовые плиты — причина сотен смертей от отравления угарным газом в год.

Зелёный свет

Решение проблемы начинается с признания того, что оранжевый цвет газа — опасный признак.

Следующий шаг — вызов квалифицированного мастера службы газа для детального осмотра вашей плиты и газовых коммуникаций. Мастеру, возможно, понадобится прочистить отверстия горелок, отрегулировать положение воздушной заслонки или заменить конфорку неподходящего размера. Отрегулировать баланс газа и кислорода в горючей смеси самому не получится. Важный шаг к домашней безопасности — установка специальных мониторов, которые отслеживают содержание угарного газа в воздухе и предупреждают, если его содержание превышает норму.

Физические свойства

Металлический натрий, сохраняемый в минеральном масле

Качественное определение натрия с помощью пламени — ярко-жёлтый цвет эмиссионного спектра «D-линии натрия», дублет 588,9950 и 589,5924 нм. Натрий — серебристо-белый металл, в тонких слоях с фиолетовым оттенком, пластичен, даже мягок (легко режется ножом), свежий срез натрия блестит. Величины электропроводности и теплопроводности натрия достаточно высоки, плотность равна 0,96842 г/см³ (при 19,7 °C), температура плавления 97,86 °C, температура кипения 883,15 °C.

Под давлением становится прозрачным и красным, как рубин.

При комнатной температуре натрий образует кристаллы в кубической сингонии, пространственная группа I m3m, параметры ячейки a = 0,42820 нм, Z = 2.

При температуре −268 °С (5 К) натрий переходит в гексагональную фазу, пространственная группа P 63/mmc, параметры ячейки a = 0,3767 нм, c = 0,6154 нм, Z = 2.

Пламя спиртовки

Для различных химических опытов применяют мелкие резервуары со спиртом. Их именуют спиртовками. Строение пламени подобно свечному, но все же имеет свои особенности. Фитиль просачивается спиртом, чему содействует капиллярное давление. При достижении вершины фитиля происходит испарение спирта. В виде пара он воспламеняется и горит при температуре не больше 900 °C.

Строение пламени спиртовки имеет обычную форму, оно почти бесцветное, со слегка голубоватым оттенком. Его зоны более размытые, чем у свечи. В спиртовой горелке, основа пламени находится над калильной сеткой горелки. Углубление пламени ведет к снижению объема темного конуса, а из отверстия выходит светящаяся зона.

Об элементе

На́трий — элемент первой группы (по старой классификации — главной подгруппы первой группы), третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 11. Обозначается символомNa (лат. Natrium). Простое веществонатрий — мягкий щелочной металл серебристо-белого цвета.

Натрий (а точнее, его соединения) известен и использовался с давних времён. В Библии, в книге пророка Иеремии, упоминается слово др.-греч. νίτρον — в Септуагинте, а слово лат. nitroet — в Вульгате (Иер. 2:22) как название вещества, это род соды или поташа, который в смеси с маслом, служил моющим средством. В Танахе слову др.-греч. νίτρον соответствуют др.-евр. ברית‎ — «мыло» и др.-евр. נתר‎ — «щёлок (мыльная жидкость)». Сода (натрон), встречается в природе в водах натронных озёр в Египте. Природную соду древние египтяне использовали для бальзамирования, отбеливания холста, при варке пищи, изготовлении красок и глазурей. Плиний Старший пишет, что в дельте Нила соду (в ней была достаточная доля примесей) выделяли из речной воды. Она поступала в продажу в виде крупных кусков, из-за примеси угля окрашенных в серый или даже чёрный цвет.

Название «натрий» происходит от латинского слова natrium (ср. др.-греч. νίτρον), которое было заимствовано из среднеегипетского языка (nṯr), где оно означало среди прочего: «сода», «едкий натр».

Аббревиатура «Na» и слово natrium были впервые использованы академиком, основателем шведского общества врачей Йенсом Якобсом Берцелиусом (Jöns Jakob Berzelius, 1779—1848) для обозначения природных минеральных солей, в состав которых входила сода. Ранее (а также до сих пор в английском, французском и ряде других языков) элемент именовался содий (лат. sodium) — это название sodium, возможно, восходит к арабскому слову suda, означающему «головная боль», так как сода применялась в то время в качестве лекарства от головной боли.

Натрий впервые был получен английским химиком Хемфри Дэви, который сообщил об этом 19 ноября 1807 годав Бейкеровской лекции (в рукописи лекции Дэви указал, что он открыл калий 6 октября 1807 года, а натрий — через несколько дней после калия), электролизом расплава гидроксида натрия.

Характеристика

В основе классификации пламени лежат следующие характеристики:

  • состояние агрегатное сгорающих соединений. Они бывают газообразной, аэродисперсной, твердой и жидкой формы;
  • тип излучения, которое может быть бесцветным, светящимся и окрашенным;
  • распределительная скорость. Существует быстрое и медленное распространение;
  • высота пламени. Строение может быть коротким и длинным;
  • характер передвижения реагирующих смесей. Выделяют пульсирующее, ламинарное, турбулентное перемещение;
  • визуальное восприятие. Вещества горят с выделением коптящего, цветного или прозрачного пламени;
  • температурный показатель. Пламя может быть низкотемпературным, холодным и высокотемпературным.
  • состояние фазы топливо — окисляющий реагент.

Возгорание происходит в результате диффузии или при предварительном перемешивании активных компонентов.

Цвет пламени

различный вид горелки Бунзена зависит от притока кислорода: 1. богатая топливная смесь без предварительного смешивания с кислородом (подача кислорода закрыта) горит жёлтым коптящим рассеянным пламенем 2. подача воздуха снизу почти перекрыта 3. открыта в средней мере: смесь близка к стехиометрической 4. подача воздуха максимальная: бедная смесь

Цвет пламени определяется излучением электронных переходов (например, тепловым излучением) различных возбужденных (как заряженных, так и незаряженных) частиц, образующихся в результате химической реакции между молекулами горючего и кислородом воздуха, а также в результате термической диссоциации. В частности, при горении углеродного горючего в воздухе, синяя часть цвета пламени обусловлена излучением частиц CN±n, красно-оранжевая — излучением частиц С2±n и микрочастиц сажи. Излучение прочих образующихся в процессе горения частиц (CHx±n, H2O±n, HO±n, CO2±n, CO±n) и основных газов (N2, O2, Ar) лежит в невидимой для человеческого глаза УФ и ИК части спектра. Кроме того, на окраску пламени сильно влияет присутствие в самом топливе, деталях конструкции горелок, сопел и так далее соединений различных металлов, в первую очередь натрия. В видимой части спектра излучение натрия крайне интенсивно и ответственно за оранжево-желтый цвет пламени, при этом излучение чуть менее распространенного калия оказывается на его фоне практически не различимым (поскольку большинство организмов имеют в составе клеток K+/Na+ каналы, то в углеродном горючем растительного или животного происхождения на 3 атома натрия приходится в среднем 2 атома калия).

Виды древесины

Есть несколько закономерностей, обуславливающих разницу в горении различных пород дерева. Прежде всего это наличие смол — они заметно добавляют теплотворной способности дровам. Мягкий лес горит легче из-за низкой плотности. Тяжёлые породы долго поддерживают горение.

В то время как плотность древесины существенно варьируется от вида к виду, теплотворная способность их на единицу массы практически одинакова (за исключением хвойных смолистых пород). Независимо от того, какие виды деревьев пошли на дрова, влажность — основной фактор, влияющий как на процесс горения, так и на тепловой результат.

Знание разных пород древесины позволяет получить комфортное горение с меньшим расходом дров

Перечень особенностей древесины некоторых пород:

  • акация — горит медленно и даёт много тепла, быстро сохнет, в кострище издаёт характерный треск;
  • берёза — сгорает быстро, легко воспламеняется даже влажной, даёт ровный и устойчивый огонь;
  • бук — калорийное топливо, оставляет мало золы;
  • дуб — высокая теплотворная способность, выделяет при горении приятный запах, очень долго сохнет;
  • тополь — невысокая теплота сгорания;
  • фруктовые деревья — горят медленно и равномерно;
  • хвойные — ароматный дым, могут стрелять смолой, образуют много копоти.

Важно только не забывать главное: неконтролируемое открытое пламя может быть очень опасным для живых существ. Помимо ожогов от пламени и тлеющих углей, огонь может принести несравненно больше беды разгоревшись в пожар

Температура огня

Для любой области пламени свечки или горелки свойственны свои показатели температуры, зависящие от доступа кислорода. Температура открытого пламени в зависимости от зоны может меняться от 300 °C до 1600 °C. Примером выступает диффузионное и ламинарное пламя, строение трех его оболочек. Конус пламени в темной области имеет температуру нагрева до 360 °C. Над ним расположена зона свечения. Ее температура нагрева варьируется от 550 до 850 °C, что приводит к расщеплению горючей смеси и процессу ее сгорания.

Наружная область слегка заметна. В ней нагрев пламени достигает 1560 °C, что объясняется свойствами молекул горящего вещества и скоростью поступления окислителей. Здесь процесс горения самый энергичный.

Характеристика

В основе классификации пламени лежат следующие характеристики:

  • состояние агрегатное сгорающих соединений. Они бывают газообразной, аэродисперсной, твердой и жидкой формы;
  • тип излучения, которое может быть бесцветным, светящимся и окрашенным;
  • распределительная скорость. Существует быстрое и медленное распространение;
  • высота пламени. Строение может быть коротким и длинным;
  • характер передвижения реагирующих смесей. Выделяют пульсирующее, ламинарное, турбулентное перемещение;
  • визуальное восприятие. Вещества горят с выделением коптящего, цветного или прозрачного пламени;
  • температурный показатель. Пламя может быть низкотемпературным, холодным и высокотемпературным.
  • состояние фазы топливо — окисляющий реагент.

Возгорание происходит в результате диффузии или при предварительном перемешивании активных компонентов.

По категориям

Подавляющее большинство простых неорганических (например, хлорид натрия ) и органических соединений (например, этанола) бесцветны. Соединения переходных металлов часто окрашиваются из-за переходов электронов между d-орбиталями разной энергии. (см. ). Органические соединения имеют тенденцию к окрашиванию при обширном конъюгации , вызывая уменьшение энергетической щели между ВЗМО и НСМО , переводя полосу поглощения из УФ в видимую область. Точно так же цвет возникает из-за энергии, поглощаемой соединением, когда электрон переходит из ВЗМО в НСМО. Ликопин — классический пример соединения с обширной конъюгацией (11 конъюгированных двойных связей), дающей интенсивный красный цвет (ликопин отвечает за цвет томатов ). Комплексы с переносом заряда имеют тенденцию к очень интенсивному цвету по разным причинам.

Цвет

Спектр голубого (предварительно перемешанного, т. Е. Полного сгорания) пламени бутановой горелки, показывающий испускание полосы молекулярных радикалов и полос Свана

Обратите внимание, что практически весь излучаемый свет находится в области спектра от синего до зеленого ниже примерно 565 нанометров, что объясняет голубоватый цвет не содержащего сажу углеводородного пламени.

Пламя цвет зависит от нескольких факторов, наиболее важным является , как правило , излучение черного тела и спектральный диапазон излучения, как с спектральной линии излучения и поглощения спектральной линии играет меньшие роли. В наиболее распространенном типе пламени, углеводородном пламени, наиболее важным фактором, определяющим цвет, является подача кислорода и степень предварительного смешивания топлива с кислородом, которая определяет скорость горения и, следовательно, температуру и пути реакции, тем самым создавая разные цветовые оттенки. .

Различные типы пламени горелки Бунзена зависят от подачи кислорода. Слева богатое топливо без предварительной смеси кислорода дает желтое сажистое диффузионное пламя; справа бедное пламя, полностью смешанное с кислородом, не дает сажи, а цвет пламени создается молекулярными радикалами, особенно излучением полос CH и C2 .

В лаборатории в условиях нормальной силы тяжести и с закрытым воздухозаборником горелка Бунзена горит желтым пламенем (также называемым безопасным пламенем) с максимальной температурой около 2000 К (3100 ° F). Желтый цвет возникает из-за накала очень мелких частиц сажи, образующихся в пламени. Когда воздухозаборник открыт, образуется меньше сажи. Когда подается достаточно воздуха, сажа не образуется, и пламя становится синим. (Большая часть этого синего цвета ранее была скрыта из-за ярко-желтого излучения.) Спектр пламени предварительно смешанного (полного сгорания) бутана справа показывает, что синий цвет возникает, в частности, из-за испускания возбужденных молекулярных радикалов в пламени, которые выделяют большая часть их света значительно ниже ≈565 нанометров в синей и зеленой областях видимого спектра.

Более холодная часть диффузионного пламени (неполное сгорание) будет красной, переходящей в оранжевый, желтый и белый при повышении температуры, о чем свидетельствуют изменения в спектре излучения черного тела. Для данной области пламени, чем ближе к белому цвету на этой шкале, тем горячее эта часть пламени. Переходы часто видны при пожарах, при которых цвет, излучаемый ближе всего к топливу, — белый, с оранжевой секцией над ним, а красноватое пламя — самое яркое. Пламя синего цвета появляется только тогда, когда количество сажи уменьшается и синие выбросы возбужденных молекулярных радикалов становятся доминирующими, хотя синий цвет часто можно увидеть у основания свечей, где сажа в воздухе менее сконцентрирована.

Определенные цвета можно придать пламени путем введения возбудимых веществ с яркими линиями спектра излучения . В аналитической химии этот эффект используется при испытаниях пламенем для определения присутствия некоторых ионов металлов. В пиротехнике , что пиротехнические красители используются для производства яркого фейерверка.

Цвет и интенсивность огня

Для получения пламени необходим кислород. Чем больше кислорода, тем лучше процесс горения. Если раздувать жар, то в него попадает свежий воздух, а значит – кислород, и когда тлеющие кусочки дерева или угольки разгораются, возникает пламя.

Пламя бывает разных цветов. Дровяное пламя костра танцует желтым, оранжевым, белым и голубыми цветами. Цвет пламени зависит от двух факторов: от температуры горения и от сжигаемого материала. Для того чтобы увидеть зависимость цвета от температуры, достаточно проследить за накалом электрической плиты. Сразу после включения спирали нагреваются и начинают светиться тусклым красным цветом.

Чем больше они накаляются, тем ярче становятся. И когда спирали достигают наивысшей температуры, они становятся яркого оранжевого цвета. Если бы можно было накалить их еще больше, они бы изменили свой цвет к желтому, белому, и, в конце концов, к голубому. Голубой цвет обозначал бы наивысшую степень нагрева. Подобное происходит и с пламенем.

Пламя: строение и структура

Для определения внешнего вида описываемого явления достаточно зажечь Появившееся несветящееся пламя нельзя назвать однородным. Визуально можно выделить три его основные области. Кстати, изучение строения пламени показывает, что различные вещества горят с образованием различного типа факела.

При горении смеси из газа и воздуха вначале происходит формирование короткого факела, цвет которого имеет голубые и фиолетовые оттенки. В нем просматривается ядро — зелено-голубое, напоминающее конус. Рассмотрим это пламя. Строение его разделяется на три зоны:

  1. Выделяют подготовительную область, в которой происходит нагревание смеси из газа и воздуха при выходе из отверстия горелки.
  2. За ней следует зона, в которой происходит горение. Она занимает верхушку конуса.
  3. Когда имеется недостаток воздушного потока, газ сгорает не полностью. Выделяется углерода двухвалентный оксид и водородные остатки. Их догорание протекает в третьей области, где есть кислородный доступ.

Теперь отдельно рассмотрим разные процессы горения.

Температура огня

Для любой области пламени свечки или горелки свойственны свои показатели температуры, зависящие от доступа кислорода. Температура открытого пламени в зависимости от зоны может меняться от 300 °C до 1600 °C. Примером выступает диффузионное и ламинарное пламя, строение трех его оболочек. Конус пламени в темной области имеет температуру нагрева до 360 °C. Над ним расположена зона свечения. Ее температура нагрева варьируется от 550 до 850 °C, что приводит к расщеплению горючей смеси и процессу ее сгорания.

Наружная область слегка заметна. В ней нагрев пламени достигает 1560 °C, что объясняется свойствами молекул горящего вещества и скоростью поступления окислителей. Здесь процесс горения самый энергичный.

Химические процессы в пламени

Процесс окисления проходит в неприметной зоне, которая расположена вверху и имеет наивысшую температуру. В ней частички продукта горения поддаются окончательному сгоранию. А излишек кислорода и нехватка топлива ведут к сильному процессу окисления. Этой способностью можно пользоваться при быстром нагревании веществ над горелкой. Для этого вещество окунают в верхушку пламени, где горение совершается значительно быстрее.

Восстановительные реакции происходят в центральной и нижней части пламени. Тут находится достаточный запас горючего и небольшой доступ кислорода, необходимый для процесса горения. При добавлении в эти зоны кислородсодержащих веществ происходит отщепление кислорода.

Как восстановительное пламя рассматривают процесс распада железа двухвалентного сульфата. При проникновении FeSO4 в середину факела, происходит сначала его нагрев, а потом распад на оксид трехвалентного железа, ангидрид и двуокись серы. В этой реакции происходит восстановление серы.

Профессиональные вредности

Источником промышленного получения М. являются медьсодержащие руды, которые представлены наиболее часто сульфидами (халькопиритом — CuFeS2, борнитом — Cu5FeS4, халькозином — Cu2S, ковеллином — CuS) и окисленными минералами: карбонатами [малахитом — Cu2(OH)2CO3, азуритом — Cu3(OH)2(CO3)2] и окислами (купритом — Cu2O, меланконитом — CuO).

Человек контактирует с М. при добыче и обогащении руд, получении черновой меди, при использовании М. и ее соединений в промышленности и сельском хозяйстве. Избыточное поступление М. в организм оказывает токсическое действие, одной из причин к-рого является угнетение SH-ферментов. Токсическое действие простых соединений М. более выражено, чем комплексных. У рабочих, занятых обработкой изделий из М. и ее сплавов или при контакте с медьсодержащими фунгицидами, возможно острое отравление, проявляющееся ознобом, кратковременным повышением температуры, заканчивающимся проливным потом. При более длительной лихорадке характерны явления со стороны жел.-киш. тракта — тошнота с жаждой, сладкий вкус во рту, слюнотечение, рвота. Такая «медная» или «медно-протравная» лихорадка по клин, картине напоминает литейную лихорадку (см.).

В случаях приема перорально быстровсасывающихся соединений М. отмечают металлический вкус во рту, обильное слюнотечение, тошноту, рвоту; рвотные массы имеют сине-зеленый цвет. Отмечают схваткообразные боли в животе, понос с примесью крови, при этом фекалии приобретают черный цвет. Резко выражено гемолитическое действие М. — гемолиз, появление гемоглобина в моче, желтуха; в моче белок и гиалиновые цилиндры. Возможны симптомы уремии: слабость, головокружение, затрудненное дыхание. Может наблюдаться и «медно-протравная лихорадка» — озноб, температура до 39°, проливной пот, резкая слабость.

Неотложная терапия при остром отравлении М. — щелочные ингаляции, внутривенное введение р-ра глюкозы с аскорбиновой к-той, внутрь — крепкий сладкий чай. По показаниям — сердечные средства, кислород, тепло.

Длительное воздействие пыли медных руд может приводить к развитию у рабочих пневмокониоза (см.). При совместном действии с кварцем металлическая медь, ее окислы усиливают силикотический процесс в легких, специфически поражая сосуды и способствуя развитию воспалительной реакции. Для мелкодисперсных аэрозолей М. более характерно общее токсическое действие, проявляющееся функциональными изменениями печени, почек, нервной системы, жел.-киш. тракта.

Предельно допустимая концентрация в воздухе рабочей зоны для металлической меди —1 мг/м3 (в т. ч. среднесменная ПДК — 0,5 мг/м3), для кремнемедистого сплава — 4 мг/м3, для медно-никелевой руды — 4 мг/м3, для медно-сульфидных руд (при содержании в пыли менее 10% кристаллической двуокиси кремния) — 4 мг/м3.

Меры предупреждения профзаболеваний и интоксикаций. Для предотвращения выделения пыли в воздух рабочей зоны необходима герметизация процессов дробления руд и транспортировки сыпучих материалов, местная вытяжная вентиляция, увлажнение материала (бурение с промывкой, мокрое дробление, подача влажной шихты), внедрение более совершенных технол, процессов на медеплавильных заводах — обжиг в кипящем слое, электролитическая плавка, при сварочных работах — применение автоматической сварки под флюсом и в среде защитных газов неплавящимся вольфрамовым электродом. Для защиты органов дыхания от пыли используют респираторы (см.), при сварочных работах — маски с принудительной подачей воздуха.

Определение меди в пробе пыли производится по реакции ионов Cu2+ с диэтилдитиокарбаматом (образуется комплексное соединение, окрашенное в желтый цвет).