Как устроен процессор компьютера

Команды и иерархия памяти

Чтобы лучше понять принцип работы команд, связанных с памятью, стоит обратить внимание на концепцию иерархии памяти — связь между кэшем, оперативной памятью и главным запоминающим устройством. Когда процессор работает с командой памяти, данных о которой у него еще нет в регистре, он будет продвигаться по иерархии памяти, пока не найдет нужную информацию

Большинство современных процессоров имеют три уровня кэша: первый, второй и третий. Сначала процессор проверит наличие необходимых команд в кэше первого уровня — самом маленьком и быстром из всех. Зачастую этот кэш разделен на две части: первая отведена под данные, а вторая — под команды. Помните, команды извлекаются процессором из памяти так же, как и любые другие данные. 

Типичный кэш первого уровня может состоять из нескольких сотен килобайт. Если процессор не найдет в нем то, что нужно, то перейдет к проверке кэша второго уровня (размером в несколько мегабайт), а затем — третьего (уже занимающего десятки мегабайт). В случае, если необходимых данных не будет и в кэше третьего уровня, то поиск будет производиться в оперативной памяти, а затем в накопителях. С каждым подобным «шагом», увеличивается не только объем доступных данных, но и задержка.  

После того, как процессор нашел необходимые данные, он отправляет их вверх по иерархии памяти для сокращения время поиска, на случай, если они понадобятся в дальнейшем. Для справки: процессор может считывать данные во внутреннем регистре всего за один-два цикла, в кэше первого уровня понадобится немногим больше, в кэше второго уровня уже около десяти, а третьего — несколько десятков циклов. Если приходится задействовать память или накопители, то процессору может понадобятся десятки тысяч, а то и миллионы циклов. В зависимости от системы, у каждого ядра процессора может быть собственный кэш первого уровня, общий с другим ядром кэш второго уровня и кэш третьего уровня у группы из четырех или более ядер. Более подробно речь о многоядерных процессорах пойдет позже.

Маркировка процессора

Весьма важно уметь читать и правильно истолковывать маркировку процессора, ибо магазины бывают разные, продавцы – не всегда честные, а вот выложить лишние N-тысяч рублей за непонятный «камень» вряд ли кому-то хочется, а посему важно уметь читать маркировку процессора. Давайте разберем ее на конкретном примере, допустим, для производителя AMD

В общем виде маркировку от AMD (для поколения Family 10h) можно представить в следующем виде (см. изображение):

Расшифровка будет следующей:

Марка процессора (1). Возможны следующие символы:

  • A – AMD Athlon;
  • H – AMD Phenom;
  • S – AMD Sempron;
  • O – AMD Optheron.

Назначение процессора (2). Варианты:

  • D – desktop – для рабочих станций или настольных ПК;
  • E – embedded server – для выделенных серверов;
  • S – server – для серверов.

Модель процессора (3). Возможны обозначения:

  • Е – энергоэффективные процессоры;
  • Х – заблокированный множитель;
  • Z – разблокированный множитель.

Тепловой пакет и класс системы охлаждения (4). Данные берутся из таблицы (см. изображение):

Корпус процессора (5). Данные берутся из таблицы (см. изображение).

Количество ядер (6). Значения от 2 до С (12).

Объем кэш-памяти (7). Данные из таблицы (см. изображение).

Ревизия процессора или степпинг (8). Данные из таблицы (см. изображение).

Итак, на основании данных таблицы можно легко определить, что перед нами за процессор, допустим, судя по модели ниже (см. изображение), перед нами..

..процессор AMD с маркировкой HDZ560WFK2DGM, которая означает:

  • H – CPU семейства AMD Phenom;
  • D – назначение: рабочие станции/настольные ПК;
  • Z560 – модельный номер процессора 560 (Z — со свободным множителем);
  • WF – TDP до 95 Вт;
  • K – упакован процессор в корпус 938 pin OµPGA (Socket AM3);
  • 2 – общее количество активных ядер;
  • D – объем кэш-памяти L2 512 КБ и объем кэш-памяти L3 6144 КБ;
  • GM — ядро процессора степпинга C3.

Вот так, зная учетные данные таблиц, можно легко вычислить, что перед Вами за экземпляр.

Собственно, это все, что хотелось бы рассказать. Думаю, что информация окажется для Вас полезной и пригодится еще не один раз.

Основные характеристики процессоров

Мы рассмотрели, что такое процессор компьютера, как он работает

Ознакомились с тем, что из себя представляют два основных их вида, время обратить внимание на их характеристики

Итак, для начала их перечислим: бренд, серия, архитектура, поддержка определенного сокета, тактовая частота процессора, кэш, количество ядер, энергопотребление и тепловыделение, интегрированная графика. Теперь разберем с пояснениями:

Бренд – кто производит процессор: AMD, или Intel. От данного выбора зависит не только цена приобретения, и производительность, как можно было бы предположить из предыдущего раздела, но также и выбор остальных комплектующих ПК, в частности, материнской платы. Поскольку процессоры от АМД и Интел имеют различную конструкцию и архитектуру, то в сокет (гнездо для установки процессора на материнской плате) предназначенный под один тип процессора, нельзя будет установить второй;
Серия – оба конкурента делят свою продукцию на множество видов и подвидов. (AMD — Ryzen, FX,. Intel- i5, i7);
Архитектура процессора – фактически внутренние органы ЦП, каждый вид процессоров имеет индивидуальную архитектуру. В свою очередь один вид можно разделить на несколько подвидов;
Поддержка определенного сокета — очень важная характеристика процессора, поскольку сам сокет является «гнездом» на материнской плате для подсоединения процессора, а каждый вид процессоров требует соответствующий ему разъем. Собственно об этом было сказано выше. Вам либо нужно точно знать какой сокет расположен на вашей материнской плате и под нее подбирать процессор, либо наоборот (что более правильно);
Тактовая частота – один из значимых показателей производительности ЦП. Давайте ответим на вопрос что такое тактовая частота процессора. Ответ будет простым для этого грозного термина — объем операций выполняющихся в единицу времени, измеряющийся в мегагерцах (МГц);
Кэш — установленная прямо в процессор память, её ещё называют буферной памятью, имеет два уровня — верхний и нижний. Первый получает активную информацию, второй – неиспользуемую на данный момент. Процесс получения информации идет с третьего уровня во второй, а потом в первый, ненужная информация проделывает обратный путь;
Количество ядер — в ЦП их может быть от одного до нескольких. В зависимости от количества процессор будет называться двухъядерных, четырех ядерным и т.д. Соответственно от их числа будет зависеть мощность;
Энергопотребление и тепловыделение

Тут все просто – чем выше процессор «съедает» энергии, тем больше тепла он выделит, обращайте внимание на этот пункт, чтобы выбрать соответствующий кулер охлаждения и блок питания.
Интегрированная графика – у AMD первые такие разработки появились в 2006, у Intel с 2010. Первые показывают больший результат, чем конкуренты

Но все равно, до флагманских видеокарт пока ни один из них не смог дотянуть.

Устройство центрального процессора

Процессор — это своего рода компьютерный мозг. Фактически, более одного процессора, ни один элемент компьютера не выполняет задачи. Сотни потоков в секунду проходят через центральный процессор. Он обрабатывает информацию и распределяет ее между другими компонентами. Не зря его называют сердцем компьютера. Через него проходят вся информация и все процессы. Что такое CPU в компьютере, разобрались, перейдем к его устройству.

Сверху процессора находится механическая крышка. Это необходимо для отвода тепла и защиты процессора в случае сбоя или падения. Сразу под этой крышкой находится некий кристалл, отвечающий за все процессоры компьютера. Кристалл на основе кремния. В случае минимального повреждения работа центрального процессора будет остановлена. Под кристаллом находится специальная прокладка, к которой крепятся своеобразные «ножки» процессора на задней стороне процессора. Именно они связываются с материнской платой и передают всю информацию. Как и в случае с кристаллом, при наличии хотя бы одной ножки компьютер выключится.

Подытожим на примере

Чтобы подвести итоги, кратко рассмотрим архитектуру процессора Intel Core 2. Это было еще в 2006 году, поэтому некоторые детали могут быть устаревшими, но информации о новых разработках отсутствуют в публичном доступе. 

На самом верху располагается кэш команд и буфер ассоциативной трансляции. Буфер помогает процессору определить, где в памяти располагаются необходимые команды. Эти инструкции хранятся в кэше команд первого уровня, а после этого отправляются в предекодер, так как из-за сложностей архитектуры x86 декодирование происходит во множество этапов. Сразу же за ними идет предсказатель переходов и предвыборщик кода, которые снижают вероятность возникновения потенциальных проблем со следующими командами. 

Далее команды отправляются в очередь команд. Вспомните, как внеочередное исполнение позволяет процессору выбрать именно ту команду, которую практичнее всего выполнить в конкретный момент из очереди текущих инструкций. После того, как процессор определил нужную команду, та декодируется во множество микроопераций. В то время как команда может содержать сложную для ЦП задачу, микрооперации представляют собой детализированные задачи, которые процессору легче интерпретировать.

Затем эти инструкции попадают в таблицу псевдонимов регистров, переупорядочивающий буфер и станцию резервации. Подробно расписать их принцип работы в одном абзаце, увы, не получится, так как это — информация, которую обычно подают на последних курсах технических вузов. Если в двух словах, то все они используются в процессе внеочередного исполнения для управления зависимостями между командами. 

На самом деле, у каждого ядра процессора множество арифметическо-логических устройств и портов памяти. Команды отправляются в станцию резервации, пока не освободится устройство или порт. Затем команда обрабатывается с помощью кэша данных первого уровня, а полученный результат сохраняется для дальнейшего использования, после чего процессор может приступать к следующей задаче. На этом все!

Пусть эта статья и не предназначалась для того, чтобы служить исчерпывающим руководством по тому, как работает каждый из процессоров,  она должна дать вам базовое представление об их внутренней работе и сложности. К сожалению, о том, как действительно работают современные процессоры, знают лишь работники Intel и AMD, поэтому информация, описанная в этой статье — лишь вершина айсберга, ведь каждый пункт, описанный в тексте — это результат огромного количества исследований и разработок.

Блок управления и исполнительный тракт

Элементы процессора можно разделить на два основных: блок управления (он же — управляющий автомат) и исполнительный тракт (он же — операционный автомат). Говоря простым языком, процессор — это поезд, в котором машинист (управляющий автомат) управляет различными элементами двигателя (операционного автомата). 

Исполнительный тракт подобен двигателю и, как следует из названия, это путь, по которому данные передаются при их обработке. Он получает входные данные, обрабатывает их  и отправляет в нужное место после завершения операции. Блок управления, в свою очередь, направляет этот поток данных. В зависимости от инструкции, исполнительный тракт будет направлять сигналы к различным компонентам процессора, включать и выключать различные части пути, а также отслеживать состояние всего процессора.

Блок-схема работы базового процессора. Черными линиями отображен поток данных, а красными — поток команд.

Классификация АЛУ

По способу действия над операндами АЛУ делятся на последовательные и параллельные. В последовательных АЛУ операнды представляются в последовательном коде, а операции производятся последовательно во времени над их отдельными разрядами. В параллельных АЛУ операнды представляются параллельным кодом и операции совершаются параллельно во времени над всеми разрядами операндов.

По способу представления чисел различают АЛУ:

  1. для чисел с фиксированной точкой;
  2. для чисел с плавающей точкой;
  3. для десятичных чисел.

По характеру использования элементов и узлов АЛУ делятся на блочные и многофункциональные. В блочном АЛУ операции над числами с фиксированной и плавающей точкой, десятичными числами и алфавитно-цифровыми полями выполняются в отдельных блоках, при этом повышается скорость работы, так как блоки могут параллельно выполнять соответствующие операции, но значительно возрастают затраты оборудования. В многофункциональных АЛУ операции для всех форм представления чисел выполняются одними и теми же схемами, которые коммутируются нужным образом в зависимости от требуемого режима работы.

По своим функциям АЛУ является операционным блоком, выполняющим микрооперации, обеспечивающие приём из других устройств (например, памяти) операндов, их преобразование и выдачу результатов преобразования в другие устройства. Арифметико-логическое устройство управляется управляющим блоком, генерирующим управляющие сигналы, инициирующие выполнение в АЛУ определённых микроопераций. Генерируемая управляющим блоком последовательность сигналов определяется кодом операции команды и оповещающими сигналами.

> См. также

Математический сопроцессор

> Примечания

  1. Макаровой Н. В. Информатика: Учебник. — М.: Финансы и статистика, 2006. — 768 с. — ISBN 978-5-279-02202-1.

Выбираем

Условно процессоры можно разделить на 4 класса: офисные, мультимедийные, игровые и с максимальной производительностью. К первому из них можно отнести системы начального уровня (например, Athlon 5350 с 4 ядрами на борту). Такие системы отлично работают с офисными приложениями, позволяют просматривать фильмы и слушать музыку. Мультимедийные ПК более производительные. Они позволяют, кроме всего ранее перечисленного, запускать игры на средних и минимальных настройках. В качестве примера можно привести A-6600 от AMD. В свою очередь, следующий класс ПК ориентирован сугубо для запуска игрушек, в том числе и с максимальными настройками. Тут, кроме производительного процессора, должна быть также установлена и дискретная (внешняя) видеокарта. Тут Core i5 альтернативы нет на сегодняшний день. А вот сердцем компьютера с бескомпромиссной производительностью обязательно должен быть Core i7. Он без проблем справится с любой задачей не только на сегодняшний день, а и в ближайшие 2-3 года. Опять-таки обязательно наличие внешнего более производительного графического адаптера.

Часто возникает на практике такая ситуация, когда Что делать в таком случае? К этому приводит работа одного или нескольких служб и приложений, которые «съедают» ресурсы процессора. Рекомендации в этом случае следующие:

  • Нажимаем «Ctrl», «Alt» и «Delete». В открывшемся перечне находим пункт «Диспетчер задач».
  • Далее переходим на вкладку «Процессы». Смотрим те из них, которые больше всего загружают процессор. Если такие есть, то выделяем их и нажимаем внизу кнопку «Остановить».
  • Потом переходим на «Приложения» и повторяем ранее изложенную процедуру.
  • Затем пробуем повторно запустить приложение. При повторении ситуации, когда процессор полностью загружен, перезагружаем компьютер.
  • Если это не решает проблему, то нужно переустановить программу.
  • В крайнем случае, если ничего не помогает, то нужно проверить системные требования приложения. Может быть, ваш процессор не подходит для этой программы.

Многое зависит также и от операционной системы. Сейчас наиболее распространенная — Windows 7. Загрузка ЦП будет меньше на Виндовс 8

Поэтому при выборе операционной системы лучше обращать внимание на нее

Процессор компьютера – цифровое электронное устройство

Процессор компьютера

Среди цифровых электронных устройств одним из наиболее сложных устройств является процессор компьютера. Это своего рода апофеоз развития цифровой техники.

Внешне он представляет собой кремниевую пластину, смонтированную в корпусе, имеющем множество электрических выводов для подключения к электропитанию и к другим устройствам компьютера.

За то, что процессор делается на кремниевых пластинах, на жаргоне компьютерщиков его иногда называют «камень», так как кремний является весьма прочным материалом.

На эту пластину путем очень точного напыления вещества (точность измеряется ангстремами) в вакууме и при соблюдении идеальной чистоты производства воспроизводят сложнейшую и чрезвычайно миниатюрную по своим размерам электрическую схему, состоящую из десятков и сотен тысяч мельчайших элементов (в основном, транзисторов), соединенных между собой специальным образом.

Производство таких устройств является настолько высокотехнологичным, что его смогли освоить только страны с самой развитой экономикой. Занятно, что при производстве процессоров не измеряют брак, как это принято практически во всех отраслях промышленности и производства, а измеряют так называемый процент выхода годных  изделий, так как совсем немногие заготовки процессоров в конечном итоге становятся работоспособными устройствами.

Качественно произведенные кремниевые пластинки помещают в корпус с выводами и снабжают устройствами охлаждения (радиатор и вентилятор), так как сотни тысяч миниатюрных транзисторов при своей работе выделяют изрядное количество тепла.

Логическая структура процессора компьютера

Если посмотреть на внутреннюю логическую структуру процессора компьютера, то он представляет собой совокупность соединенных между собой устройств:

– арифметико-логическое устройство (АЛУ), в котором, собственно, и производится преобразование информации,

– устройство управления (УУ), которое предназначено для управления арифметико-логическим устройством,

– и регистры (ячейки) памяти, в которых хранятся входные данные, промежуточные данные и результирующие данные.

Команды, предназначенные для управления работой процессора, попадают из оперативной памяти в устройство управления. Это устройство управляет работой арифметико-логического устройства в соответствии с полученными командами.

В свою очередь, АЛУ в соответствии с полученными из УУ командами, осуществляет

  • ввод информации из регистров,
  • обработку информации и
  • запись обработанной информации в регистры.

Регистры процессора могут обмениваться информацией с ячейками оперативной памяти (тоже на основании команд АЛУ). Поэтому в конечном итоге процессор компьютера

  • осуществляет обработку данных, получаемых из оперативной памяти,
  • а обработанные данные также размещает в оперативной памяти.

Цикл выполнения команд — Декодирование

Когда процессор получает команду, ему нужно точно определить тип этой команды. Данный процесс называется декодированием. Каждая команда обладает особым набором битов, опкодом, который дает возможность процессору распознать ее тип. Примерно по тому же принципу работает распознавание компьютером различных расширений файлов. К примеру, .jpg и .png — форматы изображений, но каждый из них обрабатывает данные по-разному, поэтому компьютеру и нужно точно распознавать их тип.

Стоит отметить, что сложность декодирования может зависеть от того, насколько продвинутой является архитектура набора команд процессора. У архитектуры RISC-V, к примеру, несколько десятков команд, а у x86 — несколько тысяч. У типичного процессора Intel x86 процесс декодирования является одним из сложнейших и занимает огромное количество памяти. Чаще всего процессоры декодируют команды, связанные с памятью, арифметическими вычислениями и переходом. 

Арифметико-логическое устройство и внутренние регистры

Представляет собой комбинационную сеть, которая выполняет логические и арифметические операции над данными.

В состав микропроцессора обычно входит и ряд регистров. Они используются для временного хранения команд, данных и адресов во время выполнения программы. Например, у микропроцессора Intel 8085 имеется 8-битный аккумулятор (Acc), 6 8-битных регистров общего назначения (B, C, D, E, H и L), 8-разрядный регистр команд (IR), в котором хранится следующая исполняемая инструкция, 16-битный программный счетчик с адресом следующей команды, которую необходимо выбрать из памяти в IR, 16-битный указатель стека, регистр флагов, который сигнализирует о выполнении определенных условий, возникающих во время выполнения логических и арифметических операций, и некоторые другие специальные регистры для внутренних процессов, доступа к которым у программиста нет.

Компоненты частоты

Рассматриваемый показатель формируется из двух компонентов. Во-первых, это частота системной шины — измеряется она обычно в сотнях мегагерц. Во-вторых, это коэффициент, на который соответствующий показатель умножается. В некоторых случаях производители процессоров дают пользователям возможность регулировать оба параметра. При этом, если выставить в достаточной мере высокие значения для системной шины и множителя, можно ощутимо увеличить производительность микросхемы. Именно таким образом осуществляется разгон процессора

Правда, его задействовать нужно осторожно

Дело в том, что при разгоне может значительно увеличиться температура центрального процессора. Если на ПК не будет установлено соответствующей системы охлаждения, то это может привести к выходу микросхемы из строя.

Что же такое процессор?

Процессор – это «мозг» вашего компьютера, в нем происходят все вычислительные операции, работающие на ПК, то есть он управляет всеми программами, но не как ему хочется, а как требуют определенные алгоритмы созданные производителями.

Мощность процессора зависит от многих параметров, большинство пользователей ошибочно считают, что самый важный параметр – это тактовая частота и все остальное фигня. Это не так друзья, безусловно — это очень важный параметр, но забегая вперед, могу вам рассказать, что есть еще множество параметров влияющих на производительность процессора в вашем компьютере, которые в общей сложности приведут к тому что, процессор с более высокой тактовой частотой будет работать значительно медленнее. В будущем я распишу подробно, какие параметры будут влиять на производительность, а пока в ознакомительных целях поговорим только о базовых параметрах.

Что же вообще следует понимать под понятием тактовая частота – это количество операций, которые может выполнить процессор за определенный период времени.

Измеряется в миллионах операций за секунду. Чтобы не говорить каждый раз такие огромные цифры используются сокращения Мгц (мегагерцы) и Ггц (гигагерцы).

То есть частота процессора может быть, к примеру 1000 Мгц или 1 Ггц, что означает одну и туже величину.

Я думаю, уже все слышали, что процессоры бывают одноядерные, двухъядерные, четырехъядерные, и т.д. Количество процессоров указывает на его возможность одновременно (параллельно) выполнять несколько задач. А если он быстрее выполняет операции, значит, и мощность компьютера увеличивается.

Важно! Только не считайте, что если у вас, к примеру двухъядерный процессор с тактовой частотой 2,2 Ггц, то общая частота вашего процессора 2.2*2 = 4.4 Ггц – это не верно. Двухъядерный процессор действительно может быть более производителен, но не из-за того что его тактовая частота складывается из количества ядер, а только потому что одновременно (параллельно) работают два процессора, мощность которых как была 2.2 Ггц так и осталась

Просто вместе они быстрее обработают больший объем информации

Двухъядерный процессор действительно может быть более производителен, но не из-за того что его тактовая частота складывается из количества ядер, а только потому что одновременно (параллельно) работают два процессора, мощность которых как была 2.2 Ггц так и осталась. Просто вместе они быстрее обработают больший объем информации.

К примеру, вам нужно почистить кастрюлю картошки, с который вы справитесь за час, но к вам пришел знакомый и вместе вы почистили ее за пол часа. Но ведь ваша личная скорость не увеличилась, вы работали все в том же темпе, а справились с задачей быстрее только потому что параллельно с вами трудился знакомый, что и позволило сократить затраченное время на выполнение задачи.

Вывод, тактовая частота не суммируется от количества ядер процессора, но увеличивается общая производительно при одновременной работе нескольких процессоров.

Покупка многоядерного процессора в разы увеличит мощность вашего ПК. Но не всегда есть смысл менять процессор на более мощный, потому что его замена может потребовать замены ещё нескольких деталей в частности материнской платы, а это обойдется вам в копеечку. Поэтому советую, сначала узнать какой у вас процессор.

Жесткий диск

Жесткий диск необходим для хранения программ и
информации. В настоящее время в компьютерах используются жесткие диски 2 типов:
HDD и SSD. SSD – твердотельные накопители, не имеющие в своем составе
движущихся частей, — более производительные хранилища.

Объем памяти

Чем больше объем, тем больше можно вместить данных. Необходимо
рационально выбирать объем памяти. Малый объем будет создавать трудности в
работе, а слишком большой может быть не востребован.

Скорость чтения/записи

Чем выше скорость чтения, тем быстрее будет загружаться операционная система и программы. Наилучшими показателями скорости отличаются твердотельные SSD диски.

Апгрейд путем замены HDD на SSD не кажется таким очевидным. Однако такая замена значительно ускоряет загрузку операционной системы и программ в целом. Компьютер по ощущения начинает работать быстрее, практически не тормозит. Но надо понимать, что такой апгрейд влияет лишь на скорость отклика системы в целом, и никак не повлияет, например, на частоту кадров в компьютерных играх.

Типы процессоров по производительности

Используемые в настоящее время в ноутбуках (и настольных ПК) процессоры можно четко разделить по производительности на 4 линейки (для процессоров Intel):

Intel Сore самые производительные процессоры
Intel Core M процессоры средней производительности
Intel Pentium ниже средней производительности
Intel Celeron процессоры низкой производительности

Помимо этого, процессоры линейки Core также подразделяются на классы, в зависимости от функциональных возможностей. Так, Core i3 — самые слабые в этой линейке, Core i5 — средние, Core i7 — мощные, а Core i9 — супермощные.

Pentium и Celeron производятся на основе ядра Atom и на основе ядра Core. Если вы видите в обозначении этого процессора первую цифру 3, например, Celeron N3010, то значит его год выхода 2015 и 2016. Цифра 4 означает более свежую модификацию 2017-2018 года.

Для современных ноутбуков актуальными являются процессоры 6, 7 и 8 поколения. Обозначается поколение первой цифрой в индексе чипа:

  • Core i3-6100U — 6 поколение Skylake (2015),
  • Core i5-6200U — 6 поколение Skylake (2015),
  • Core i7-6500U — 6 поколение Skylake (2015),
  • Core i7-7500U — 7 поколение Kaby Lake (2016),
  • Core i7-7Y75 — 7 поколение Kaby Lake (2016),
  • Core i7-8550U — 8 поколение Coffee Lake 2017 года.

Более свежие процессоры 2018 года имеют индекс К.

Обозначения у процессоров AMD более простое, а первая цифра означает год выхода:

  • 5 — 2013 год (A6-5200),
  • 6 — 2014 год (A6-6310),
  • 7 — 2015 год (A6-7310),
  • 9 — 2016 год (A6-9210).

В настоящее время средним по производительности процессором для ноутбуков является процессор AMD A12 9720P 2700 МГц, который пользователи приобретают для офисных и графических задач. Топовыми мобильными процессорами этого производителя считаются AMD Ryzen 7 2700U 2200 МГц и выше.

Выполнение инструкций

Инструкции хранятся в ОЗУ в последовательном порядке. Для гипотетического процессора инструкция состоит из кода операции и адреса памяти/регистра. Внутри управляющего устройства есть два регистра инструкций, в которые загружается код команды и адрес текущей исполняемой команды. Ещё в процессоре есть дополнительные регистры, которые хранят в себе последние 4 бита выполненных инструкций.

Ниже рассмотрен пример набора команд, который суммирует два числа:

  1. . Это команда сохраняет в ОЗУ данные, скажем, . Первые 4 бита — код операции. Именно он определяет инструкцию. Эти данные помещаются в регистры инструкций УУ. Команда декодируется в инструкцию — поместить данные (последние 4 бита команды) в регистр .
  2. . Ситуация, аналогичная прошлой. Здесь помещается число 2 () в регистр .
  3. . Команда суммирует два числа (точнее прибавляет значение регистра в регистр ). УУ сообщает АЛУ, что нужно выполнить операцию суммирования и поместить результат обратно в регистр .
  4. . Сохраняем значение регистра в ячейку памяти с адресом .

Вот такие операции нужны, чтобы сложить два числа.