Наследственная изменчивость: особенности и значение

Методы изучения

Анализ природы И. и передачи измененных признаков из поколения в поколение служит главным средством изучения механизма наследственности (см.). Внешне неразличимые фенотипы в одинаковых условиях среды в одних случаях могут быть результатом изменения генотипа, а в других— результатом ненаследственных модификаций. Без генетического анализа (см.) нельзя определить, какая доля фенотипической И. обусловлена ненаследственными модификациями и какая генетическими факторами. Если популяция состоит из особей с идентичными генотипами, то искусственный отбор (см.) в такой популяции будет бесперспективен, т. к. вся наблюдаемая фенотипическая И. обусловлена влиянием среды. Некоторые ламаркисты ошибочно полагали, что негенетические модификации, так наз. благоприобретенные признаки, могут превращаться в наследственные изменения. Такая точка зрения не была подтверждена и представляет сейчас лишь исторический интерес. Данные 60— 70-х гг. 20 в. показывают, что превращение модификаций в наследственные изменения совершенно невозможно. По мере развития генетики (см.) стало ясно, что противопоставление мутаций (крупных качественных изменений признаков) флюктуациям (мелким количественным вариациям) совершенно ошибочно. Мутации могут затрагивать любые признаки организма, на любой стадии его развития, и притом самого различного таксономического значения. Анализ причин и развитие точных количественных вариационно-статистических способов оценки И. показали, что мутации могут лежать в основе ничтожных количественных отклонений, внешне ничем не отличимых от ненаследственных модификаций. Для выявления относительной роли среды и генотипа в формировании того или иного признака используют два основных взаимодополняющих метода: один из них заключается в исследовании генотипически различных особей в как можно более одинаковой окружающей среде, а другой — в изучении генетически идентичных особей в разных условиях среды. Оба метода легко применить к таким организмам, как бактерии и дрожжи, которые в результате многократно повторяющихся делений образуют генетически идентичные клоны. У многих высших растений клоны можно получить путем бесполого размножения (клубнями, луковицами, черенками и т. п.). Напр., все растения одного сорта картофеля генетически идентичны, и поэтому различия между ними обусловлены внешними факторами. Если же два разных сорта картофеля выращивать в одинаковых условиях, то различия между растениями будут связаны с различиями в их генотипах. У животных клоны генетически идентичных особей можно получить в результате тесного и продолжительного инбридинга (см.). Для выявления роли наследственности и среды в формировании различных признаков у человека с успехом используют близнецовый метод (см.). Исследования на монозиготных близнецах, имеющих идентичную наследственность и воспитывающихся порознь, дают ценные сведения о влиянии среды на развитие наследственных признаков. При анализе прерывистой (качественной) И., обусловленной аллелями одного генного локуса, определить характер наследования и вклад в общую И. наследственных и средовых факторов обычно не представляет большого труда. В случае непрерывной (количественной) И. исследователь сталкивается со значительными трудностями. При изучении какого-либо количественного признака проводят анализ возможно большего числа различающихся между собой особей и полученные данные группируют в ряд размерных классов. Представив эти величины в виде графика распределения частот, можно исследовать характер И. Обычно бывает трудно разделить генетические и средовые компоненты изменчивости и исследовать отдельно ту ее часть, к-рая обусловлена генетически. Для изучения этих компонентов разработаны различные математико-статистические методы (см. Биометрия).

Спонтанные мутации

Мутации, помимо качественных свойств, характеризует и способ возникновения. Спонтанные (случайные) мутации, возникающие при нормальных условиях жизни. Спонтанный процесс зависит от внешних и внутренних факторов ( биологические, химические, физические ). Спонтанные мутации возникают у человека в соматических и генеративных тканях. Метод определения спонтанных мутаций основан на том, что у детей появляется доминантный признак, хотя у его родителей он отсутствует. Проведенное в Дании исследование показали, что примерно одна из 24000 гамет несет в себе доминантную мутацию. Ученый же Холдейн рассчитал среднюю вероятность появления спонтанных мутаций, которая оказалась равна 5*10-5 за поколение. Другой ученый Курт Браун предложил прямой метод оценки таких мутаций, а именно: число мутаций разделить на удвоенное количество обследованных индивидов.

Индуцированные мутации.

Индуцированный мутагенез это искусственное получение мутаций с помощью мутагенов различной природы. Впервые способность ионизирующих излучений вызывать мутации была обнаружена Г.А. Надсоном и Г.С. Филлиповым. Затем, проводя обширные исследования, была установлена радиобиологическая зависимость мутаций. В 1927 году американским ученым Джозефом Мюллером было доказано, что частота мутаций увеличивается с увеличением дозы воздействия. В конце сороковых годов открыли существование мощных химических мутагенов, которые вызывали серьезные повреждения ДНК человека для целого ряда вирусов. Одним из примеров воздействия мутагенов на человека может служить эндомитоз удвоение хромосом с последующим делением центромер, но без расхождения хромосом.

Виды мутаций и их характеристика

Мутации бывают доминантные, проявляющиеся в первом поколении и рецессивные, полезные и вредные.

Типы мутаций различают по способу возникновения:

  • спонтанные или случайные, возникающие при нормальных условиях жизни и зависящие от внешних и внутренних факторов,
  • индуцированные, полученные с помощью мутагенов различной природы.

По характеру проявления:

  • доминантные, проявляющиеся в первом поколении,
  • рецессивные, часто понижающие жизнеспособность.

По месту возникновения:

  • генеративные — представляют собой мутации, возникающие в половых клетках или спорах и проявляющиеся через поколение,
  • соматические, наследуемые при вегетативном размножении.

По уровню возникновения:

  • генные. Их причины появления изменение геномной последовательности нуклеотидов в ДНК,
  • хромосомные перестройки – изменения структуры хромосом в результате разрыва хромосомы,
  • геномные – изменение числа хромосом. Геном это комплекс генов организма определенного вида.

Наследственная изменчивость: мутационная, комбинативная

Наследственной (генотипической) изменчивостью называют происходящие в геноме изменения либо возникновение новых комбинаций генов, способных передаваться по наследству. Происходящие изменения затрагивают генетический материал, являясь одной из главных причин эволюции.

На сегодняшний день различают следующие формы генотипической изменчивости:

Мутационная

При этом возникающие изменения затрагивают наследственный материал (молекулы ДНК). Термин «мутация» был предложен ученым из Голландии — Гуго де Фризом. Проявление мутаций у живых организмов связывают с факторами внутренней и внешней среды. В зависимости от степени проявления различают:

  • генные мутации (перестановка нуклеотидов внутри гена);
  • геномные мутации (изменение числа хромосом);
  • хромосомные мутации (изменения участков ДНК).

Комбинативная

Основу таких изменений составляет половой процесс, результатом которого является образование множества различных генотипов. Генотипом именуют совокупность всех генов организма, полученных от обоих родителей. Половое размножение приводит из-за комбинации генов к формированию новых фенотипов и генотипов. Так, в любом ребенке по-разному сочетаются признаки отца и матери, но на планете нет абсолютно одинаковых людей!

Помимо полового размножения, комбинативную изменчивость обуславливает процесс кроссинговера (перекреста хромосом). Каждая из наших клеток несет хромосомы бабушек и дедушек. Определенное их количество получено кроссинговером от гомологичных хромосом, принадлежавших ранее предкам. Данные хромосомы называют «рекомбинантными».

Комбинативная изменчивость может возникать и из-заслучайной встречи гамет в результате оплодотворения. 

Перечисленные три источника (половой процесс, кроссинговер и случайная встреча гамет) комбинативной изменчивости действуют одновременно и независимо друг от друга. В результате образуется много новых генотипов  с фенотипами. Новым комбинациям генетического материала свойственно легкое образование и легкое разрушение в случае передачи из поколения в поколение. 

Какие мутации передаются по наследству

Наследственные мутации происходят при серьезных изменениях ДНК. Изменения и повреждения появляются на начальных этапах разделения яйцеклетки, абсолютно здоровые родительские клетки не являются гарантом отсутствия сбоя.

Хромосомные болезни делятся на два варианта:

  1. В первом варианте болезнь обусловлена количеством хромосом. Чаще всего выявляется синдром Дауна. На сегодня этот синдром считается самым изученным и проработанным из всех хромосомных аномалий.
  2. Второй вариант включает в себя заболевания, возникшие при структурных изменениях в хромосомах. К признакам данных патологий относят: задержку роста, низкий лоб, умственную отсталость, округлость кончика носа, глубокую посадку глаз, врожденные пороки сердца, раздвоенные почки и прочие.

Примеры наследственных заболеваний

Следующие заболевания передаются по наследству:

  • гемофилия,
  • альбинизм,
  • серповидно-клеточная анемия,
  • шизофрения,
  • косолапость.

История развития генетики

Грегор Иоганн Мендель (1822-1884 гг.) — ботаник, биолог, монах, аббат

С давних времен человек пользовался генетическими методами для улучшения пород домашних животных и сортов растений, но делал это бессознательно, не представляя механизмов этих методов. Уже 6000 лет назад человек понимал, что некоторые признаки могут наследоваться и передаваться от одного поколения другому.

Лишь в начале XX века ученые осознали важность законов наследственности и ее механизмов. Первый шаг в этом направлении осуществил австрийский монах, природовед Грегор Мендель(1822-1884 гг.), который в 1866 году опубликовал статью «Опыты над растительными гибридами»

В статье Мендель изложил основы современной генетики. Сообщение об опытах сделал раньше, в 1865 году на заседании Общества любителей природоведения.

Грегор Иоганн Мендель родился в Моравии. В 1843 году вступил в монастырь августинцев в Врюнне в Австро-Венгрии (ныне г. Брно, Чешская республика). Позднее отбыл в Вену на два года, где изучал в университете естественную историю и математику. В 1853 году вернулся в монастырь. Летом 1856 года начал исследования.

Успехи Г. Менделя частично зависели от удачного выбора объекта исследования – гороха посевного. Преимущества, которые имеет этот вид:

–  имеет много сортов, которые хорошо отличаются один от другого (из 34 сортов Мендель отобрал 22);

–  легко выращивать, дает несколько урожаев за один сезон;

–  самоопыляющееся растение;

–  возможно искусственное опыление;

–  дает многочисленное плодовитое потомство.

Опыты Г. Менделя в те времена не привлекли внимания ученых и были забыты на определенный период.

Датой рождения генетики считают 1900 год, когда одновременно три ботаника – голландец Г. де Фриз, немец К. Корренс, австриец Э. Чермак – ознакомились с работой Г. Менделя. Независимо друг от друга они проводили опыты по гибридизации растений, и их результаты оказались приближенными к результатам исследования Менделя.

В 1909 году единицы наследственности датский ботаник Йогансен назвал генами.

С 1911 года Т. Морган с сотрудниками в Колумбийском университете (США) экспериментально доказывают, что носителями генов являются хромосомы, гены в них расположены линейно, формулируют основные положения хромосомной теории.

В 1953 году английский биофизик и генетик Ф. Крик и американский биохимик Дж. Уотсон предложили модель структуры ДНК.

С того времени генетика достигла значительных успехов в объяснении природы наследственности как на уровне организма, так и на уровне гена.

Ненаследственная изменчивость

Модификационная изменчивость в биологии — это способность единичного живого организма (фенотипа) подстраиваться под факторы внешней среды в пределах своего генотипа. Благодаря такому свойству особи приспосабливаются к изменениям климата и других условий существования. лежит в основе адаптационных процессов, протекающих в любом организме. Так, у беспородных животных при улучшении условий содержания увеличивается продуктивность: надои молока, яйценоскость и прочее. А животные, завезенные в горные районы, вырастают низкорослыми и с хорошо развитым подшерстком. Изменение факторов внешней среды и обуславливают изменчивость. Примеры этого процесса можно легко найти в повседневной жизни: кожа человека под воздействием ультрафиолетовых лучей становится темной, в результате физических нагрузок развиваются мышцы, растения, выросшие в затененных местах и на свету, имеют разную форму листьев, а зайцы меняют окрас шерсти зимой и летом.

Для ненаследственной изменчивости характерны следующие свойства:

  • групповой характер изменений;
  • не наследуется потомством;
  • изменение признака в пределах генотипа;
  • соотношение степени изменения с интенсивностью воздействия внешнего фактора.

Наследственная изменчивость

Наследственная или генотипическая изменчивость в биологии — это процесс, в результате которого изменяется геном организма. Благодаря ей особь приобретает признаки, ранее несвойственные ее виду. По Дарвину, генотипическая изменчивость является основным двигателем эволюции. Различают следующие виды наследственной изменчивости:

  • мутационная;
  • комбинативная.

Возникает в результате обмена генами при половом размножении. При этом признаки родителей по-разному комбинируются в ряду поколений, повышая разнообразие организмов в популяции. Комбинативная изменчивость подчиняется правилам наследования Менделя.

Пример такой изменчивости — инбридинг и аутбридинг (близкородственное и неродственное скрещивание). Когда черты отдельного производителя хотят закрепить в породе животных, то применяют близкородственное скрещивание. Таким образом, потомство становится более однообразным и закрепляет качества основателя линии. Инбридинг ведет к проявлению рецессивных генов и может приводить к вырождению линии. Для повышения жизнеспособности потомства применяют аутбридинг — неродственное скрещивание. При этом нарастает гетерозиготность потомства и увеличивается разнообразие внутри популяции, и, как следствие, возрастает устойчивость особей к неблагоприятным воздействиям факторов внешней среды.

Мутации, в свою очередь, разделяются на:

  • геномные;
  • хромосомные;
  • генные;
  • цитоплазматические.

Изменения, затрагивающие половые клетки, передаются по наследству. Мутации в могут передаваться потомству, если особь размножается вегетативным способом (растения, грибы). Мутации могут быть полезными, нейтральными или вредными.

Наследственная изменчивость в процессе эволюции

Развитие генетики помогло сделать значительный шаг вперед и в развитии эволюционного учения. Тот факт, что человека и обезьяну отличает лишь одна пара хромосом, стал существенным доказательством теории Дарвина. У растений и животных в историческом развитии можно проследить наследование прогрессивных черт, которые передавались и закреплялись в генотипе. К примеру, водоросли вышли на сушу благодаря тому, что в генотипе закрепился признак наличия механической и проводящей тканей. Каждое последующее поколение оставляло для себя только нужные, полезные признаки, которые корректировались в зависимости от условий обитания и окружающей среды. Так появились господствующие виды растений и животных, обладающие самыми прогрессивными чертами строения.

Итак, наследственная изменчивость — это способность организмов приобретать новые признаки, которые закрепляются в генотипе. Такие изменения носят продолжительный характер, не исчезают при изменении условий среды и передаются по наследству.

Вся изменчивость, которую мы видим, является генетической?

Нет, не вся изменчивость, которую мы наблюдаем в популяциях живых организмов, имеет генетическую основу. Существует термин, широко используемый в эволюционной биологии, называемый наследуемостью. Этот параметр количественно определяет долю фенотипической дисперсии из-за генетической изменчивости.

Математически это выражается следующим образом: h2 = VG / (VG + ВЕ). Анализируя это уравнение, мы видим, что оно будет иметь значение 1, если все увиденное нами изменение связано с генетическими факторами..

Однако окружающая среда также оказывает влияние на фенотип. «Стандарт реакции» описывает, как идентичные генотипы изменяются в зависимости от градиента окружающей среды (температура, pH, влажность и т. Д.).

Таким же образом, различные генотипы могут быть представлены под одним и тем же фенотипом, путем каналирования процессов. Это явление работает как буфер развития, который предотвращает проявление генетических изменений..

Комбинативная изменчивость[править]

В основе комбинативной изменчивости лежит половой процесс, в результате которого образуется множество разнообразных генотипов. Генотип представляет собой сочетание генов обоих родителей, число генов организма исчисляется тысячами или десятками тысяч. При половом размножении комбинации генов приводят к формированию нового генотипа и фенотипа, у любого ребенка можно обнаружить признаки, типичные для его матери или отца, тем не менее даже среди близких родственников не найти двух абсолютно одинаковых людей. Появление зеленых гладких и желтых морщинистых семян во втором поколении от скрещивания растений с зелеными гладкими и желтыми морщинистыми семенами является примером комбинативной изменчивости. Рекомбинация генов, основанная на явлении перекреста хромосом, или явление кроссинговера – второй важный признак комбинативной изменчивости. Каждая наша клетка несет хромосомы дедушек и бабушек, определенная часть этих хромосом получила в результате кроссинговера часть своих генов от гомологичных хромосом, принадлежавших ранее другой линии предков, такие хромосомы называют рекомбинантными.
Рекомбинантные хромосомы – хромосомы, вызывающие в зиготе появление признаков, нетипичных для родителей.Случайная встреча гамет при оплодотворении является третьим очень важным признаком комбинативной изменчивости, в моногибридном скрещивании возможны три генотипа: АА, Аа, аа. Каким именно генотипом будет обладать зигота, зависит от случайной комбинации гамет.Все три источника комбинативной изменчивости действуют независимо и одновременно, создавая большое разнообразие новых генотипов и фенотипов. Новые комбинации генетического материала легко образуются и легко разрушаются при переходе из поколения в поколение, поэтому в потомстве у родителей, которые имеют какие-то особенные признаки, появляются особи, явно уступающие родителям.


Изменчивость


Причины комбинативной изменчивости

Закономерности

Модификационную изменчивость можно измерить с помощью статистических закономерностей. Для этого исследуют возможности организма по определённому признаку у группы особей. Например, размер пшеницы на одном поле в зависимости от освещения (часть поля хорошо освещена, часть – в тени).

Количественные показатели определённого качества живых организмов, расположенные в порядке возрастания или убывания, называются вариационным рядом. Длина ряда показывает возможности изменчивости для определённой группы особей.

Графически ряд можно изобразить с помощью вариационной кривой. Обычно большое количество особей имеет средний показатель, поэтому кривая симметрична.

Рис. 3. Пример вариационной кривой.
С помощью изменчивости организм быстрее адаптируется к условиям окружающей среды. Кроме того, понятие о том, какое практическое значение имеет модификационная изменчивость в жизни организма, помогает прогнозировать и максимально использовать возможности особи (в селекции – повышение урожайности, для человека – раскрытие потенциала ребёнка).

Что мы узнали?

Из урока 11 класса узнали о закономерностях модификационной изменчивости и её значении в жизни организма. Причиной модификаций являются условия внешней среды. Под влиянием температуры, света, влажности меняются количественные черты организма (рост, мышечная масса, вес). Изменчивость ограничена генотипом и имеет норму реакций. Все приобретённые в течение жизни модификации не передаются по наследству.

  1. /10

    Вопрос 1 из 10

    Что такое модификационная изменчивость?

    • Фенотипическая изменчивость, не передающаяся по наследству

    • Фенотипическая изменчивость, передающаяся по наследству

    • Генетическая изменчивость, не передающаяся по наследству

    • Генетическая изменчивость, передающаяся по наследству

Генные мутации

Генные ( точковые ) мутации затрагивают, как правило, один или несколько нуклеотидов, при этом один нуклеотид может превратиться в другой, может выпасть(делеция), продублироваться, а группа нуклеотидов может развернутся на 180 градусов. Например, широко известен ген человека, ответственный за серповидно клеточную анемию, который может привести к летальному исходу. Соответствующий нормальный ген кодирует одну из полипептидныз цепей гемоглобина. У мутантного гена нарушен всего один нуклеотид (ГАА на ГУА). В результате в цепи гемоглобина одна аминокислота заменена на другую( вместо глутамина валин). Казалось бы ничтожное изменение, но оно влечет за собой роковые последствия: эритроцит деформируется, приобретая серповидно клеточную форму, и уже не способен транспортировать кислород, что и приводит к гибели организма. Генные мутации приводят к изменению аминокислотной последовательности белка. Наиболее вероятное мутация генов происходит при спаривание тесно связанных организмов, которые унаследовали мутантный ген у общего предка. По этой причине вероятность возникновения мутации повышается у детей, чьи родители являются родственниками. Генные мутации приводят к таким заболеваниям, как амавротическая идиотия, альбинизм, дальтонизм и др.

Интересно, что значимость нуклеотидных мутаций внутри кодона неравнозначна: замена первого и второго нуклеотида всегда приводит к изменению аминокислоты, третий же обычно не приводит к замене белка. К примеру, «Молчащая мутация»- изменение нуклеотидной последовательности, которая приводит к образованию схожего кодона, в результате аминокилотная последовательность белка не меняется.

Хромосомные мутации

Хромосомные мутации приводят к изменению числа, размеров и организации хромосом, поэтому их иногда называют хромосомными перестройками. Хромосомные перестройки делятся на внутри- и межхромосомные. К внутрехромосмным относятся:

  1.  Дубликация один из участков хромосомы представлен более одного раза.
  2.  Делеция утрачивается внутренний участок хромосомы.
  3.  Инверсия повороты участка хромосомы на 180 градусов.

Межхромосомные перестройки (их еще называют транслокации) делятся на:

  1.  Реципрокные обмен участками негомологичных хромосом.
  2.  Нереципрокные изменение положения участка хромосомы.
  3.  Дицентрические слияние фрагментов негомологичных хромосом.
  4.  Центрические слияние центромер негомологичных хромосом.

Хромосомные мутации проявляются у 1% новорожденных. Однако интересно, исследования показали, что нестабильность соматических клеток здоровых доноров не исключение, а норма. В связи с этим была высказана гипотеза о том, что нестабильность соматических клеток следует рассматривать не только как патологическое состояние, но и как адаптивную реакцию организма на измененные условия внутренней среды. Хромосомные мутации могут обладать фенотипическими явлениями. Наиболее распостраненный пример — синдром «Кошачьего крика» (плачь ребенка напоминает мяукание кошки). Обычно носители такой делеции погибают в младенчестве. Хромосомные мутации часто приводят к паталогическим нарушениям в организме, но в то же время хромосомные перестройки сыграли одну из ведущих ролей в эволюции. Так, у человека 23 пары хромосом, а у обезьяны — 24. Таким образом различие составляет всего одна хромосома. Ученые предполагают, что в процессе эволюции произошла хотя бы одна перестройка. Подтверждением этого может служить и тот факт, что 17 хромосома человека отличается от такой же хромосомы шимпанзе лишь одной перецентрической инверсией. Такие рассуждения во многом подтверждают теорию Дарвина.