Аргумент (комплексный анализ) — argument (complex analysis)

Идентичности

Одним из основных мотивов для определения главного значения Arg является возможность записывать комплексные числа в форме «модуль-аргумент». Следовательно , для любого комплексного числа г ,

zзнак равно|z|еяArg⁡z.{\ displaystyle z = \ left | z \ right | e ^ {i \ operatorname {Arg} z}.}

Это действительно только в том случае, если z не равно нулю, но может считаться действительным для z = 0, если Arg (0) рассматривается как неопределенная форма, а не как неопределенная.

Далее следуют некоторые дальнейшие отождествления. Если z 1 и z 2 — два ненулевых комплексных числа, то

Arg⁡(z1z2)≡Arg⁡(z1)+Arg⁡(z2)(мод(-π,π),Arg⁡(z1z2)≡Arg⁡(z1)-Arg⁡(z2)(мод(-π,π).{\ displaystyle {\ begin {align} \ operatorname {Arg} (z_ {1} z_ {2}) & \ Equiv \ operatorname {Arg} (z_ {1}) + \ operatorname {Arg} (z_ {2}) {\ pmod {(- \ pi, \ pi]}}, \\\ operatorname {Arg} \ left ({\ frac {z_ {1}} {z_ {2}}} \ right) & \ Equiv \ operatorname { Arg} (z_ {1}) — \ operatorname {Arg} (z_ {2}) {\ pmod {(- \ pi, \ pi]}}. \ End {align}}}

Если z ≠ 0 и n — любое целое число, то

Arg⁡(zп)≡пArg⁡(z)(мод(-π,π).{\ displaystyle \ operatorname {Arg} \ left (z ^ {n} \ right) \ Equiv n \ operatorname {Arg} (z) {\ pmod {(- \ pi, \ pi]}}.}

Пример

Arg⁡(-1-яя)знак равноArg⁡(-1-я)-Arg⁡(я)знак равно-3π4-π2знак равно-5π4{\ displaystyle \ operatorname {Arg} {\ biggl (} {\ frac {-1-i} {i}} {\ biggr)} = \ operatorname {Arg} (-1-i) — \ operatorname {Arg} ( i) = — {\ frac {3 \ pi} {4}} — {\ frac {\ pi} {2}} = — {\ frac {5 \ pi} {4}}}

Использование комплексного логарифма

Из , легко следует, что . Это полезно, когда доступен комплексный логарифм .
zзнак равно|z|еяArg⁡(z){\ Displaystyle г = | г | е ^ {я \ OperatorName {Arg} (г)}}Arg⁡(z)знак равно-япер⁡z|z|{\ displaystyle \ operatorname {Arg} (z) = — я \ ln {\ frac {z} {| z |}}}

Главное значение

Рис. 3. Главное значение Arg синей точки в точке 1 + i равно π / 4 . Красная линия здесь представляет собой срез ветки и соответствует двум красным линиям на рисунке 4, если смотреть вертикально друг над другом).

Поскольку полный поворот вокруг начала координат оставляет комплексное число неизменным, есть много вариантов, которые можно сделать , обведя начало координат любое количество раз. Это показано на рисунке 2, представляющем многозначную (многозначную) функцию , где вертикальная линия (не показанная на рисунке) разрезает поверхность на высотах, представляющих все возможные варианты угла для этой точки.
φ{\ displaystyle \ varphi}ж(Икс,у)знак равноаргумент⁡(Икс+яу){\ Displaystyle е (х, y) = \ arg (х + iy)}

Когда требуется четко определенная функция, то обычный выбор, известный как главное значение , — это значение в открытом-закрытом интервале (- π rad, π rad] , то есть от — π до π радиан , исключая — π сам рад (эквивалент от -180 до +180 градусов , исключая -180 °). Это представляет собой угол до половины полного круга от положительной вещественной оси в любом направлении.

Некоторые авторы определяют диапазон главного значения как находящийся в закрытом-открытом интервале [0, 2 π ) .

Обозначение

Главное значение иногда имеет начальную букву с заглавной буквы, как в Arg z , особенно когда рассматривается общая версия аргумента

Обратите внимание, что обозначения различаются, поэтому arg и Arg могут быть заменены в разных текстах.. Набор всех возможных значений аргумента можно записать в терминах Arg как:

Набор всех возможных значений аргумента можно записать в терминах Arg как:

аргумент⁡(z)∈{Arg⁡(z)+2πп∣п∈Z}.{\ displaystyle \ arg (z) \ in \ {\ operatorname {Arg} (z) +2 \ pi n \ mid n \ in \ mathbb {Z} \}.}

так же

Arg⁡(z)знак равно{аргумент⁡(z)-2πп∣п∈Z∧-π<аргумент⁡(z)-2πп≤π}.{\ Displaystyle \ OperatorName {Arg} (z) = \ {\ arg (z) -2 \ pi n \ mid n \ in \ mathbb {Z} \ land — \ pi <\ arg (z) -2 \ pi n \ leq \ pi \}.}

Определение

Рисунок 2. Два варианта аргумента φ{\ displaystyle \ varphi}

Аргумент комплексного числа г = х + гу , обозначается Arg ( г ) , определяется двумя эквивалентными способами:

  1. Геометрически, в комплексной плоскости , как двумерный полярный угол от положительной действительной оси к вектору, представляющему z . Числовое значение задается углом в радианах и положительно, если измеряется против часовой стрелки.φ{\ displaystyle \ varphi}
  2. Алгебраически, как любая действительная величина, такая чтоφ{\ displaystyle \ varphi}
    zзнак равнор(потому что⁡φ+ягрех⁡φ)знак равнореяφ{\ Displaystyle Z = р (\ соз \ varphi + я \ грех \ varphi) = re ^ {я \ varphi}}
    для некоторого положительного действительного r (см . формулу Эйлера ). Величина r — это модуль (или абсолютное значение) z , обозначаемый | z |:
    рзнак равноИкс2+у2.{\ displaystyle r = {\ sqrt {x ^ {2} + y ^ {2}}}.}

Имена величины , для модуля и фазы , для аргумента, иногда используют то же самое.

При обоих определениях можно видеть, что аргумент любого ненулевого комплексного числа имеет много возможных значений: во-первых, как геометрический угол, ясно, что вращение всего круга не меняет точку, поэтому углы отличаются на целое кратное из 2я радиан (полный круг) являются такими же, как отражено на фиг.2 справа. Аналогичным образом , от периодичности от греха и сов , второе определение также обладает этим свойством. Нулевой аргумент обычно остается неопределенным.

Библиография

  • Альфорс, Ларс (1979). Комплексный анализ: Введение в теорию аналитических функций одной комплексной переменной (3-е изд.). Нью-Йорк; Лондон: Макгроу-Хилл. ISBN 0-07-000657-1.
  • Поннусвами, С. (2005). Основы комплексного анализа (2-е изд.). Нью-Дели; Мумбаи: Нароса. ISBN 978-81-7319-629-4.
  • Бирдон, Алан (1979). Комплексный анализ: принцип аргументации в анализе и топологии . Чичестер: Вайли. ISBN 0-471-99671-8.
  • Боровский, Ефрем; Борвейн, Джонатан (2002) [1-е изд. 1989 как математический словарь . Математика . Словарь Коллинза (2-е изд.). Глазго: HarperCollins . ISBN 0-00-710295-X.

Аргумент комплексного числа

Угол $\phi$ между положительным направлением
действительной оси и радиус-вектора $\overline{O M}$, соответствующим
комплексному числу $z=a+b i$, называется аргументом
этого числа и обозначается $\arg z$ .

Аргумент $\phi$ комплексного числа
$z=a+b i$ связан с его
действительной и мнимой частями соотношениями:

$\phi=\operatorname{tg} \frac{b}{a}, \cos \phi=\frac{a}{\sqrt{a^{2}+b^{2}}}, \sin \phi=\frac{b}{\sqrt{a^{2}+b^{2}}}$

На практике для вычисления аргумента комплексного числа обычно пользуются формулой:

$\phi=\arg z=\arg (a+b i)=\left\{\begin{array}{l}{\operatorname{arctg} \frac{b}{a}, a \geq 0} \\ {\operatorname{arctg} \frac{b}{a}+\pi, a \lt 0}\end{array}\right.$

Слишком сложно?

Геометрическая интерпретация комплексного числа не по зубам? Тебе ответит эксперт через 10 минут!

Пример

Задание. Найти аргумент комплексного числа
$z=-3-3 i$

Решение. Так как $a=\operatorname{Re} z=-3 \lt 0$, то
в выше приведенной формуле будем рассматривать вторую строку, то есть

$\phi=\arg z=\operatorname{arctg} \frac{-3}{-3}+\pi=\operatorname{arctg} 1+\pi=\frac{\pi}{4}+\pi=\frac{5 \pi}{4}$

Ответ. $\phi=\arg z=\frac{5 \pi}{4}$

Аргумент действительного положительного числа равен
$0^{\circ}$, действительного отрицательного —
$\pi$ или
$180^{\circ}$. Чисто мнимые числа с положительной мнимой частью имеют
аргумент равный $\frac{\pi}{2}$, с отрицательной мнимой частью —
$\frac{3 \pi}{2}$ .

У комплексно сопряженных чисел аргументы отличаются знаком (рис. 3).

Читать дальше: комплексно сопряженные числа.

Комплексные числа — простое объяснение

Для того, чтобы разобраться с комплексными числами, следует для начала рассмотреть множество действительных чисел. К этому множеству относятся целые числа, и дроби, и иррациональные числа. При этом каждой точке числовой прямой обязательно соответствует некоторое действительное число.

Рассмотрим две точки на прямой А = 1 и Б = 2. Сложим эти две точки. Их сумма эта третья точка В = 1+2 = 3.

Точки также можно перемножать. Посмотрим, например, как действует умножения на минус 2. Данное действие преобразует точку 1 в минус 2.  Если мы снова умножим на минус 2, то нужно будет повторить аналогичное передвижение на прямой, поменять стороны относительно начала координат и удвоить расстояние до него. В результате получим 4.

Умножение на минус 1 устроено просто. Каждая точка переходит в симметричную ей относительно начала координат. Другими словами нужно сделать пол оборота (повернуть на 180°). Повторение умножения на минус 1 приводит в исходное положение. Умножение на минус 1 переводит 1 в минус 1. Если еще раз умножить на минус 1, мы вернемся обратно в 1.

На данном этапе можно выделить правило, что если умножить число на себя, результат всегда будет положительным. Другими словами минус 1 не имеет квадратного корня. Но только не в случае с комплексными числами.

В начале 19 века Робер Арган высказал следующую идею. Поскольку умножить на минус 1 означает повернуть на 180°, то квадратный корень из минус 1 означает повернуть на половину (90°). Если повернуть дважды на четверть оборота, вы сделаете пол оборота. Квадрат четверти оборота — это пол оборота (минус 1). То есть квадратный корень из минус 1 отвечает точке, в которую минус 1 переходит при повороте на 90°. Поскольку такое построение, выходящее за пределы горизонтальной прямой, выглядит странным, говорят, что такая точка, являющаяся квадратным корнем из минус 1 — это мнимое число. И в математике оно обозначается — i.

Понятие комплексного числа

Прежде чем, мы перейдем к рассмотрению комплексных чисел, дам важный совет: не пытайтесь представить комплексное число «в жизни» – это всё равно, что пытаться представить четвертое измерение в нашем трехмерном пространстве.

Если хотите, комплексное число – это двумерное число. Оно имеет вид , где  и  – действительные числа,  – так называемая мнимая единица. Число  называется действительной частью () комплексного числа , число  называется мнимой частью () комплексного числа .

 – это ЕДИНОЕ  ЧИСЛО, а не сложение. Действительную и мнимую части комплексного числа, в принципе, можно переставить местами:  или переставить мнимую единицу:  – от этого комплексное число не изменится. Но стандартно комплексное число принято записывать именно в таком порядке: 

Чтобы всё было понятнее, сразу приведу геометрическую интерпретацию. Комплексные числа изображаются на комплексной плоскости:
Как упоминалось выше, буквой  принято обозначать множество действительных чисел. Множество же комплексных чисел принято обозначать «жирной» или утолщенной буквой . Поэтому на чертеже следует поставить букву , обозначая тот факт, что у нас комплексная плоскость.

Комплексная плоскость состоит из двух осей: – действительная ось – мнимая ось

Правила оформления чертежа практически такие же, как и для чертежа в декартовой системе координат (см. Графики и свойства элементарных функций). По осям нужно задать масштаб, отмечаем:

ноль;

единицу по действительной оси;

мнимую единицу  по мнимой оси.

Не нужно проставлять все значения: …–3, –2, –1, 0, 1, 2, 3,… и .

Да чего тут мелочиться, рассмотрим чисел десять.

Построим на комплексной плоскости следующие комплексные числа:, , , , , , ,


По какому принципу отмечены числа на комплексной плоскости, думаю, очевидно – комплексные числа отмечают точно так же, как мы отмечали точки еще в 5-6 классе на уроках геометрии.
Рассмотрим следующие комплексные числа: , , . Вы скажете, да это же обыкновенные действительные числа! И будете почти правы. Действительные числа – это частный случай комплексных чисел. Действительная ось  обозначает в точности множество действительных чисел , то есть на оси сидят все наши «обычные» числа. Более строго утверждение можно сформулировать так: Множество действительных чисел  является подмножеством множества комплексных чисел .

Числа , ,  – это комплексные числа с нулевой мнимой частью.

Числа , ,  – это, наоборот, чисто мнимые числа, т.е. числа с нулевой действительной частью. Они располагаются строго на мнимой оси .

В числах , , ,  и действительная и мнимая части не равны нулю. Такие числа тоже обозначаются точками на комплексной плоскости, при этом, к ним принято проводить радиус-векторы из начала координат (обозначены красным цветом на чертеже). Радиус-векторы к числам, которые располагаются на осях, обычно не  чертят, потому что они сливаются с осями.

Аргумент комплексного числа

      Рассмотрим радиус–вектор произвольного, но отличного от нуля, комплексного числа   z.

      Аргументом комплексного числа z называют угол φ между положительным направлением вещественной оси и радиус-вектором    z.

      Аргумент комплексного числа  z  считают положительным, если поворот от положительного направления вещественной оси к  радиус-вектору z  происходит против часовой стрелки, и отрицательным  — в случае поворота по часовой стрелке (см. рис.).

      Считается, что комплексное число нуль аргумента не имеет.

      Поскольку аргумент любого комплексного числа определяется с точностью до слагаемого 2kπ , где  k  — произвольное целое число, то вводится, главное значение аргумента, обозначаемое   arg z   и удовлетворяющее неравенствам:

      Тогда оказывается справедливым равенство:

      Если для комплексного числа   z = x + i y   нам известны его модуль   r = | z | и его аргумент φ, то мы можем найти вещественную и мнимую части по формулам

(3)

      Если же комплексное число   z = x + i y   задано в алгебраической форме, т.е. нам известны числа   x   и   y,   то модуль этого числа, конечно же, определяется по формуле

(4)

а аргумент определяется в соответствии со следующей Таблицей 1.

      Для того, чтобы не загромождать запись, условимся, не оговаривая этого особо, символом  k  обозначать в Таблице 1 произвольное целое число.

      Таблица 1. – Формулы для определения аргумента числа   z = x + i y

Расположениечисла  z Знаки x и y Главное значение аргумента Аргумент Примеры
Положительная вещественнаяполуось

x > 0 ,

y = 0

φ = 2kπ

x > 0 ,

y > 0

Положительнаямнимаяполуось

x = 0 ,

y > 0

x < 0 ,

y > 0

Отрицательнаявещественнаяполуось

x < 0 ,

y = 0

π φ = π + 2kπ

x < 0 ,

y < 0

Отрицательнаямнимаяполуось

x = 0 ,

y < 0

x > 0 ,

y < 0

Расположениечисла  z Положительнаявещественнаяполуось
Знаки x и y

x > 0 ,

y = 0

Главноезначениеаргумента
Аргумент φ = 2kπ
Примеры
Расположениечисла  z  
Знаки x и y

x > 0 ,

y > 0

Главноезначениеаргумента
Аргумент
Примеры
Расположениечисла  z Положительнаямнимаяполуось
Знаки x и y

x = 0 ,

y > 0

Главноезначениеаргумента
Аргумент
Примеры
Расположениечисла  z  
Знаки x и y

x < 0 ,

y > 0

Главноезначениеаргумента
Аргумент
Примеры
Расположениечисла  z Отрицательнаявещественнаяполуось
Знаки x и y

x < 0 ,

y = 0

Главноезначениеаргумента π
Аргумент φ = π + 2kπ
Примеры
Расположениечисла  z  
Знаки x и y

x < 0 ,

y < 0

Главноезначениеаргумента
Аргумент
Примеры
Расположениечисла  z Отрицательнаямнимаяполуось
Знаки x и y

x = 0 ,

y < 0

Главноезначениеаргумента
Аргумент
Примеры
Расположениечисла  z  
Знаки x и y

x < 0 ,

y < 0

Главноезначениеаргумента
Аргумент
Примеры

Расположение числа   z :

Положительная вещественная полуось

Знаки x и y :

x > 0 ,   y = 0

Главное значение аргумента:

Аргумент:

φ = 2kπ

Примеры:

Расположение числа   z :

Знаки x и y :

x > 0 ,   y > 0

Главное значение аргумента:

Аргумент:

Примеры:

Расположение числа   z :

Положительная мнимая полуось

Знаки x и y :

x = 0 ,   y > 0

Главное значение аргумента:

Аргумент:

Примеры:

Расположение числа   z :

Знаки x и y :

x < 0 ,   y > 0

Главное значение аргумента:

Аргумент:

Примеры:

Расположение числа   z :

Отрицательная вещественная полуось

Знаки x и y :

x < 0 ,   y = 0

Главное значение аргумента:

π

Аргумент:

φ = π + 2kπ

Примеры:

Расположение числа   z :

Знаки x и y :

x < 0 ,   y < 0

Главное значение аргумента:

Аргумент:

Примеры:

Расположение числа   z :

Отрицательная мнимая полуось

Знаки x и y :

x = 0 ,   y < 0

Главное значение аргумента:

Аргумент:

Примеры:

Расположение числа   z :

Знаки x и y :

x < 0 ,   y < 0

Главное значение аргумента:

Аргумент:

Примеры:

Свойства модуля числа

Давайте рассмотрим семь основных свойств модуля. Независимо от того, в какой класс перешел ребенок — эти правила пригодятся всегда.

1. Модуль числа — это расстояние, а расстояние не может быть отрицательным. Поэтому и модуль числа не бывает отрицательным:

|a|0 

2. Модуль положительного числа равен самому числу.

|a| = a, если a > 0

3. Модуль отрицательного числа равен противоположному числу.

|−a| = a, если a

4. Модуль нуля равен нулю.

|0| = 0, если a = 0

5. Противоположные числа имеют равные модули.

|−a| = |a| = a

6. Модуль произведения равен произведению модулей этих чисел.

|a b| = |a| |b|, когда

a·b 0

или

−(a·b), когда a·b<0

7. Модуль частного равен частному от деления модуля числа числителя на модуль числа знаменателя: 

Свойства операций.

Операции сложения и умножения комплексных чисел обладают свойствами:

  1. коммутативности, то есть
    $$
    z_1+z_2=z_2+z_1,\qquad z_1z_2=z_2z_1;\nonumber
    $$
  2. ассоциативности, то есть
    $$
    (z_1+z_2)+z_3= z_1 + (z_2+z_3),\qquad (z_1z_2)z_3=z_1(z_2z_3);\nonumber
    $$
  3. дистрибутивности, то есть
    $$
    z_1(z_2 + z_3) = z_1z_2+z_1z_3.\nonumber
    $$

Эти свойства вытекают из определения операций сложения и умножения комплексных чисел и свойств операций для вещественных чисел.

Из этих свойств следует, что сложение и умножение комплексных чисел можно выполнять по правилам действий с многочленами, заменяя \(i\) на \(-1\). Например, равенство \eqref{ref2} можно получить так:
$$
z_1z_2=(x_1+iy_1)(x_2+iy_2)=\\=x_1 x_2+i x_1 y_2+ix_2 y_1+i^2 y_1 y_2=x_1x_2-y_1y_2+i(x_1 y_2+x_2 y_1).\nonumber
$$
Множество комплексных чисел обозначают буквой \(\mathbb{C}\). Числа \(0= 0 + 0\cdot i\) и \(1 = 1 + 0\cdot i\) на множестве \(\mathbb{C}\) обладают такими же свойствами, какие они имеют на множестве \(\mathbb{R}\), а именно: для любого \(z \in \mathbb{C}\) справедливы равенства
$$
z+ 0 = z,\qquad z\cdot 1 = z.\nonumber
$$
На множестве \(\mathbb{C}\) вычитание вводится как операция, обратная сложению. Для любых комплексных чисел \(z_1=_1+iy_1\) и \(z_2 = x_2 + iy_2\) существует, и притом только одно, число \(z\) такое, что
$$
z+z_2=z_1.\label{ref7}
$$
Это число называют разностью чисел \(z_1\) и \(z_2\) и обозначают \(z_1-z_2\). В частности, разность \(0 -z\) обозначают \(-z\).

Из уравнения \eqref{ref7} в силу правила равенства и определения суммы комплексных чисел следует, что
$$
z_1-z_2=(x_1-x_2)+i(y_1-y_2).\nonumber
$$

Деление на множестве \(\mathbb{C}\) вводится как операция, обратная умножению, а частным от деления комплексного числа \(z_1=_1+iy_1\) на число \(z_2 = x_2 + iy_2\) называют такое число \(z\), которое удовлетворяет уравнению
$$
zz_2=z_1\label{ref8}
$$
и обозначается \(z_1:z_2\) или \(\displaystyle \frac{z_1}{z_2}\).

Докажем, что уравнение \eqref{ref8} для любых комплексных чисел \(z_1\) и \(z_2\), где \(z_2\neq 0\), имеет единственный корень.

\(\circ\) Умножая обе части уравнения \eqref{ref8} на \(\overline{z}_2\), получим в силу равенства \eqref{ref6} уравнение
$$
z|z_2|^2 = z_1\overline{z}_2,\label{ref9}
$$
которое равносильно уравнению \eqref{ref8}, так как \(\overline{z}_2\neq 0\).

Умножая обе части \eqref{ref9} на \(\displaystyle\frac{1}{|z_2|^2}\), получаем \(z=\displaystyle\frac{z_1\overline{z}_2}{|z_2|^2}\), то есть
$$
\frac{z_1}{z_2}=\frac{z_1\overline{z}_2}{|z_2|^2},\nonumber
$$
или
$$
\frac{z_1}{z_2}=\frac{x_1+iy_1}{x_2+iy_2}=\frac{(x_1+iy_1)(x_2-iy_2)}{x_2^2+y_2^2}=\frac{x_1x_2+y_1y_2}{x_2^2+y_2^2}+i\frac{x_2y_1-x_1y_2}{x_2^2+y_2^2}.\ \bullet\nonumber
$$

Эту формулу можно не запоминать — важно знать, что она получается умножением числителя и знаменателя на число, сопряженное со знаменателем. Пример 1

Пример 1.

Найти частное \(\displaystyle \frac{z_1}{z_2}\), если \(z_1=5-2i,\ z_2=3 + 4i\).

$$
\triangle\quad \frac{z_1}{z_2}=\frac{(5-2i)(3-4i)}{(3+4i)(3-4i)}=\frac{15-26i+8i^2}{25}=\frac7{25}-\frac{26}{25}i.\ \blacktriangle\nonumber
$$

Определение комплексного числа. Операции над комплексными числами.

Определение. Комплексными числами называются выражения вида , в которых и — некоторые действительные числа, а — символ, называемый мнимой единицей.

Множество комплексных чисел обычно обозначается (от слова complex).
Введём понятие равенства и операции сложения и умножения для комплексных чисел.

  1. Два комплексных числа и равны тогда и только тогда, когда и .
  2. Суммой комплексных чисел и называется число 

    (1)

  3. Произведением комплексных чисел и называется число

    (2)

Обычно комплексное число обозначают одной буквой, чаще всего (пишут ). При этом число называется действительной частью числа и обозначается (от слова real); пишут или . Число называется мнимой частью числа и обозначается  (от слова imagine); пишут .

Множество комплексных чисел содержит в себе множество действительных чисел: любое действительное число можно представить в виде . Числа вида называются чисто мнимыми и обозначаются .

Пользуясь формулой (2), найдём

То есть

(3)

Заметим, что формулу (2) запоминать не нужно, так как она легко получается, если в произведении двучленов и заменить по формуле (3) на :

Пример 1. Найти сумму и произведение комплексных чисел и Решение. Пользуясь формулой (1), находим сумму:

Учитывая, что , находим произведение:

Свойства операций над комплексными числами

  1. Коммутативность сложения: для любых комплексных чисел и .
  2. Ассоциативность сложения: для любых комплексных чисел , и .
  3. для любого комплексного числа .
  4. Для любых комплексных чисел и существует комплексное число такое, что . Это число называется разностью комплексных чисел и и обозначается .
  5. Коммутативность умножения: для любых комплексных чисел и .
  6. Ассоциативность умножения:  для любых комплексных чисел , и .
  7. Закон дистрибутивности: для любых комплексных чисел , и .
  8. для любого комплексного числа .
  9. Для любых двух комплексных чисел и , , существует число такое, что . Это число называется частным комплексных чисел и и обозначается .

Все эти свойства напрямую следуют из определения операций над комплексными числами. Докажем здесь свойство 9.

Пусть , , (неравенство числа нулю означает, что хотя бы одно из чисел и не равно нулю), . Тогда равенство записывается так: Приравнивая действительные и мнимые части, получаем, что числа и удовлетворяют системе уравнений:

Эта система уравнений имеет единственное решение

то есть

(4)

Эту формулу можно не запоминать. Далее мы покажем более простой способ нахождения частного двух комплексных чисел.

Определение. Пусть задано комплексное число . Число называется комплексно сопряжённым числу и обозначается .

Произведение комплексных чисел — всегда действительное число, большее нуля. Действительно, пусть , тогда

Определение. Модулем комплексного числа называется действительное число, равное .

Заметим, что .

Покажем теперь простой способ для нахождения частного двух комплексных чисел.

Здесь мы умножили числитель и знаменатель дроби на число, комплексно сопряжённое знаменателю. В результате в знаменателе получилось действительное число.

Возведение комплексных чисел в степень

Начнем со всеми любимого квадрата.

Пример 9

Возвести в квадрат комплексное число

Здесь можно пойти двумя путями, первый способ это переписать степень как произведение множителей  и перемножить числа по правилу умножения многочленов.

Второй способ состоит в применении известной школьной формулы сокращенного умножения :

Для комплексного числа легко вывести свою формулу сокращенного умножения:. Аналогичную формулу можно вывести для квадрата разности, а также для куба суммы и куба разности. Но эти формулы более актуальны для задач комплексного анализа, поэтому на данном уроке я воздержусь от подробных выкладок.

Что делать, если комплексное число нужно возвести, скажем, в 5-ю, 10-ю или 100-ю степень? Ясно, что в алгебраической форме проделать такой трюк практически невозможно, действительно, подумайте, как вы будете решать пример вроде ?

И здесь на помощь приходит тригонометрическая форма комплексного числа и, так называемая, формула Муавра: Если комплексное число представлено в тригонометрической форме , то при его возведении в натуральную степень  справедлива формула:

Данная формула следует из правила умножения комплексных чисел, представленных в тригонометрической форме: чтобы найти произведение чисел ,  нужно перемножить их модули и сложить аргументы:

Аналогично для показательной формы: если , то:

Просто до безобразия.

Пример 10

Дано комплексное число , найти .

Что нужно сделать? Сначала нужно представить данное число в тригонометрической форме. Внимательные читатели заметили, что в Примере 8 мы это уже сделали:

Тогда, по формуле Муавра:

Упаси боже, не нужно считать на калькуляторе , а вот угол в большинстве случае следует упростить. Как упростить? Образно говоря, нужно избавиться от лишних оборотов. Один оборот составляет  радиан или 360 градусов. Выясним сколько у нас оборотов в аргументе . Для удобства делаем дробь правильной: , после чего становится хорошо видно, что можно убавить один оборот: . Надеюсь всем понятно, что  и  – это один и тот же угол.

Таким образом, окончательный ответ запишется так:

Любители стандартов везде и во всём могут переписать ответ в виде: (т.е. убавить еще один оборот и получить значение аргумента в стандартном виде).

Хотя  – ни в коем случае не ошибка.

Пример 11

Дано комплексное число , найти . Полученный аргумент (угол) упростить, результат представить в алгебраической форме.

Это пример для самостоятельного решения, полное решение и ответ в конце урока.

Отдельная разновидность задачи возведения в степень – это возведение в степень чисто мнимых чисел.

Пример 12

Возвести в степень комплексные числа , ,

Здесь тоже всё просто, главное, помнить знаменитое равенство.

Если мнимая единица возводится в четную степень, то техника решения такова:

Если мнимая единица возводится в нечетную степень, то «отщипываем» одно «и»,  получая четную степень:

Если есть минус (или любой действительный коэффициент), то его необходимо предварительно отделить:

Пример 13

Возвести в степень комплексные числа ,

Это пример для самостоятельного решения.

Определение модуля числа

Алгебра дает четкое определения модуля числа. Модуль в математике — это расстояние от начала отсчёта до точки координатной прямой, соответствующей этому числу.

Если мы возьмем некоторое число «a» и изобразим его на координатной прямой точкой «A» — расстояние от точки «A» до начала отсчёта (то есть до нуля, длина отрезка «OA») будет называться модулем числа «a».

Знак модуля: |a| = OA

Разберем на примере:

Точка «В», которая соответствует числу «−3», находится на расстоянии 3 единичных отрезков от точки 0 (то есть от начала отсчёта). То есть длина отрезка «OB» равна 3 единицам.

Число 3 (длина отрезка «OB») называют модулем числа «−3».

Обозначение модуля: |−3| = 3

Читают символы выше следующим образом: «модуль числа минус три равен трем».

Точка «С», которая соответствует числу «+4», находится на расстоянии четырех единичных отрезков от начала отсчёта, то есть длина отрезка «OС» равна четырем единицам.

Число 4 называют модулем числа «+4» и обозначают так: |+4| = 4.

Также можно опустить плюс и записать значение, как |4| = 4.

Записывайся на занятия по математике для учеников с 1 по 11 классы.