Митоз — mitosis

Митоз

Митоз – это непрямое деление клетки, при котором из материнской образуются две дочерние клетки с идентичным набором генетической информации.

Фазы митоза:

1) профаза – происходит уплотнение хроматина (конденсация), хроматиды спирализируются и укорачиваются (становятся заметными в световой микроскоп), исчезают ядрышки и ядерная оболочка, образуется веретено деления, его нити прикрепляются к центромерам хромосом, центриоли делятся и расходятся к полюсам клетки;

2) метафаза – хромосомы максимально спирализированы и располагаются вдоль экватора (в экваториальной пластинке), гомологичные хромосомы лежат рядом;

3) анафаза – нити веретена деления сокращаются одновременно и растягивают хромосомы к полюсам (хромосомы становятся однохроматидными), самая короткая фаза митоза;

4) телофаза – хромосомы деспирализируются, образуются ядрышки, ядерная оболочка, начинается деление цитоплазмы.

Митоз характерен преимущественно для соматических клеток. Благодаря митозу сохраняется постоянство числа хромосом. Способствует увеличению числа клеток, поэтому наблюдается при росте, регенерации, вегетативном размножении.

Интерфаза

Прежде чем делящаяся клетка попадает в митоз, она подвергается периоду роста, называемому интерфазой. Около 90% времени клетки при нормальном клеточном цикле могут быть потрачены на интерфазу, которая осуществляется в три основные фазы:

  • Фаза G1: период до синтеза ДНК. В этой фазе клетка увеличивается в массе, подготавливаясь к делению.
  • S-фаза: период, в течение которого происходит синтез ДНК. В большинстве клеток эта стадия происходит за очень короткий промежуток времени.
  • Фаза G2: клетка продолжает синтез дополнительных белков увеличиваться в размерах.

В последней части интерфазы, клетка все еще имеет нуклеолы. Ядро ограничено ядерной оболочкой, а хромосомы дублируются, но находятся в форме хроматина. В клетках животных две пары центриолей, образованных из репликации одной пары, расположены за пределами ядра.

После фазы G2 наступает митоз, который в свою очередь состоит из нескольких стадий и завершается цитокинезом (делением клетки).

Диагностический маркер

Появление митоза при раке груди

В гистопатологии скорость митоза является важным параметром в различных типах образцов тканей для диагностики, а также для дальнейшего определения агрессивности опухолей. Например, при обычно проводится количественная оценка . Подсчет митозов следует проводить в области наибольшей митотической активности. Визуальная идентификация этих участков затруднена в опухолях с очень высокой митотической активностью. Также обнаружение атипичных форм митоза можно использовать как диагностический и прогностический маркер. Например, митоз лаг-типа (не прикрепленный конденсированный хроматин в области митотического рисунка) указывает на рак шейки матки, связанный с папилломавирусной инфекцией высокого риска .

Нормальные и атипичные формы митоза в раковых клетках. А — нормальный митоз; B, хроматиновый мостик ; C — мультиполярный митоз; D — кольцевой митоз; E — диспергированный митоз; F — асимметричный митоз; G — митоз лаг-типа; и H, микроядра. Пятно H&E.

Анафаза митоза

Нити веретена деления тянут хроматиды к полюсам клетки, таким образом из одной двухроматидной хромосомы образуется две хромосомы. И всего в клетке – четыре хромосомы.


Схема. Анафаза митоза

Телофаза митоза

Хромосомы постепенно раскручиваются, клетка прибыла в место назначения – теперь можно распаковать чемоданы. Вокруг хромосом образуется ядерная оболочка, а затем и клеточная перетяжка. Органеллы распределяются между двумя дочерними клетками. Вот и всё, митоз завершен.  


Схема. Телофаза митоза

Общая схема митоза

Длительность митоза – полчаса. Следовательно, длительность митотического цикла = G1 + S + G2 + митоз = 9 + 10 + 4,5 + 0,5 = 24 часа.

Мейоз

Механизм деления ядер половых клеток несколько отличается от соматических. В результате него получаются клетки, которые имеют в два раза меньше генетической информации, чем их предшественники. Это необходимо для того, чтобы поддерживать постоянное количество хромосом в каждой клетке организма.

Мейоз проходит в два этапа:

— редукционный этап;

— эквационный этап.

Правильное течение данного процесса возможно только в клетках с четным набором хромосом (диплоидным, тетраплоидным, гексапроидным и т. д.). Конечно, остается возможность прохождения мейоза и в клетках с нечетным набором хромосом, но тогда потомство может оказаться нежизнеспособным.

Именно этот механизм обеспечивает стерильность в межвидовых браках. Так как в половых клетках находятся различные наборы хромосом, это затрудняет их слияние и появление жизнеспособного или фертильного потомства.

Мейоз

Мейоз – это процесс деления клетки, при котором число хромосом уменьшается вдвое, происходит образование гаплоидных клеток. 

Данный процесс проходит в  двух последовательных деления, первое из которых принято называть редукционным (мейоз I), а второе эквационным (мейоз II). Эквационное деление также можно назвать уравнительным, оно позволяет сохранить гаплоидный набор хромосом. Второе деление по механизму протекания схоже с митозом, однако здесь к полюсам расходятся сестринские хроматиды.

Так же, как и митоз, мейоз начинается после интерфазы.  Количество ДНК перед первым делением составляет 2n4c, где n – хромосомы, с – молекулы ДНК. Это обозначает, что каждая хромосома состоит из двух хроматид и имеет гомологичную пару. После первого деления, перед вторым, количество ДНК в каждой дочерней клетке уменьшается до 1n2c. Результатом мейоза после второго деления является образование четырёх гаплоидных клеток. Мейоз представлен такими же четырьмя фазами, как и митоз, однако протекающие процессы в двух этих делениях существенно отличаются. 

Мейоз I

  • Профаза I. 2n4c. Это самая длительная и сложная фаза мейоза. Здесь гомологичные хромосомы сближаются, образуя так называемые биваленты, между ними происходит обмен участками ДНК. Связь бивалента сохраняется до анафазы I. Сближение хромосом называют конъюгацией, обмен участками наследственной информации – кроссинговером. Гомологичные хромосомы соединены между собой. Ядерная оболочка растворяется. Начинает своё формирование мейотическое веретено деления. Центриоли расходятся к полюсам клетки.  
  • Метафаза I. 2n4c. На этом этапе веретено деления окончательно сформировано. Биваленты расположены в области экватора, при этом они выстроены друг напротив друга по экватору  так, что экваториальная плоскость оказывается между парами гомологичных хромосом. 
  • Анафаза I. 2n4c. Биваленты разъединяются и хромосомы расходятся к противоположным полюсам клетки. Вследствие кроссинговера, прошедшего в профазе, хроматиды этих хромосом не идентичны друг другу. 
  • Телофаза I. n2c×2. Хромосомы деспирализуются в хроматин. Происходит формирование ядерной оболочки, клетки делится на две части. У растений образуется клеточная стенка, у животных же происходит впячивание мембраны. 

Рис. 2 Мейоз I

Мейоз II

Перед эквационным делением интерфаза называется интеркинезом, так как удвоения наследственного материала (ДНК) не происходит. 

  • Профаза II. 1n2c×2. Короткая по продолжительности фаза. На этом этапе разрушается ядерная оболочка, снова исчезают ядра и ядрышки,  происходит конденсация хромосом, формируется веретено деления.
  • Метафаза II. 1n2c×2. К каждой из двухроматидных хромосом прикрепляются нити веретена деления с разных полюсов. В плоскости перпендикулярной экватору метафазы первого деления образуется метафазная пластинка. 
  • Анафаза II. 2n2c×2. Центромеры делятся. Однохроматидные хромосомы расходятся к разным полюсам. Теперь сестринские хроматиды являются сестринскими хромосомами. 
  • Телофаза II. 1n1c×4. В эту фазу происходит деспирализация хромосом, исчезает веретено деления, формируется ядерная оболочка, образуются ядра и ядрышки. Далее следует цитокинез, вследствие которого формируется 4 гаплоидные клетки с одинарным набором хромосом (1n1c). 

Рис. 3 Мейоз II

 Рис 2,  рис. 3 —  900igr.net

Хромосомы: индивидуальность, парность, число

Во время деления клетки хорошо заметны хромосомы. При изучении хромосом разных видов живых организмов было обнаружено, что их набор строго индивидуален. Это касается числа, формы, черт строения и величины хромосом. Набор хромосом в клетках тела, характерный для данного вида растений, животных, называется кариотипом (Рис. 1).

Рис 1. Диплоидный набор хромосом

В любом многоклеточном организме существует два вида клеток — соматические (клетки тела) и половые клетки, или гаметы. В половых клетках число хромосом в 2 раза меньше, чем в соматических. В соматических клетках все хромосомы представлены парами — такой набор называется диплоидным и обозначается 2n. Парные хромосомы (одинаковые по величине, форме, строению) называются гомологичными.

В половых клетках каждая из хромосом находится в одинарном числе. Такой набор называется гаплоидным и обозначается п.

Рис. 2. Строение хромосомы

Биологическое значение мейоза

Если бы в процессе мейоза не происходило уменьшения числа хромосом, то в каждом следующем поколении при слиянии ядер яйцеклетки и сперматозоида число хромосом увеличивалось бы бесконечно. Благодаря мейозу зрелые половые клетки получают гаплоидное (n) число хромосом, при оплодотворении же восстанавливается свойственное данному виду диплоидное (2n) число. При мейозе гомологичные хромосомы попадают в разные половые клетки, а при оплодотворении парность гомологичных хромосом восстанавливается. Следовательно, обеспечивается постоянных для каждого вида полных диплоидный набор хромосом и постоянное количество ДНК.
Происходящие в мейозе перекрест хромосом, обмен участками, а также независимое расхождение каждой пары гомологичных хромосом определяют закономерности наследственной передачи признака от родителей потомству. Из каждой пары двух гомологичных хромосом (материнской и отцовской), входивших в хромосомный набор диплоидных организмов, в гаплоидном наборе яйцеклетки или сперматозоида содержится лишь одна хромосома. Она может быть:

  • отцовской хромосомой;
  • материнской хромосомой;
  • отцовской с участком материнской;
  • материнской с участком отцовской.

Связанные клеточные процессы

Округление ячеек

Форма клетки изменяется в процессе митоза для типичной животной клетки, культивируемой на плоской поверхности. Клетка подвергается митотическому округлению во время сборки веретена, а затем делится посредством цитокинеза . Актомиозиновый коры головного мозг изображен в красном, ДНК / хромосом фиолетового, микротрубочках зеленых и мембранные волокнах и отвода в черном цвете. Округление также происходит в живой ткани, как описано в тексте.

В животной ткани большинство клеток во время митоза округляются до почти сферической формы. В эпителии и эпидермисе эффективный процесс округления коррелирует с правильным выравниванием митотического веретена и последующим правильным расположением дочерних клеток. Более того, исследователи обнаружили, что сильное подавление округления может привести к дефектам веретена, в первую очередь к расщеплению полюсов и неспособности эффективно захватить хромосомы . Следовательно, считается, что округление митотических клеток играет защитную роль в обеспечении точного митоза.

Силы округления вызываются реорганизацией F-актина и миозина (актомиозина) в сократительную гомогенную клеточную кору, которая 1) укрепляет периферию клетки и 2) способствует созданию внутриклеточного гидростатического давления (до 10 раз выше, чем межфазное )

Создание внутриклеточного давления особенно важно при ограничении, что было бы важно в сценарии ткани, где должны создаваться внешние силы, чтобы округлить окружающие клетки и / или внеклеточный матрикс. Генерация давления зависит от формина -опосредованной F-актином нуклеации и Rho киназы (ROCK) -опосредованного миозин II сжатия, оба из которых регулируется вверх по течению сигнальных путей RhoA и ECT2 через активность Cdk1

Благодаря его важности в митозе, молекулярные компоненты и динамика митотической актомиозиновой коры являются областью активных исследований.

Митотическая рекомбинация

Митотические клетки облучают рентгеновские лучи в G1 фазе из клеточного цикла рекомбиногенного ремонта повреждений ДНК в первую очередь рекомбинация между гомологичными хромосомами . Митотические клетки, облученные в фазе G2, восстанавливают такие повреждения преимущественно путем рекомбинации сестринских хроматид . Мутации в генах, кодирующих ферменты, используемые в рекомбинации, вызывают повышенную чувствительность клеток к уничтожению различными агентами, повреждающими ДНК. Эти результаты предполагают, что митотическая рекомбинация является адаптацией для восстановления повреждений ДНК, в том числе потенциально летальных.

Эндомитоз

Увеличение генетического материала, которое не предусматривает деление ядра, называется эндомитозом. Он обнаружен в клетках растений и животных. В данном случае не происходит разрушения цитоплазмы и оболочки ядра, но хроматин превращается в хромосомы, а затем снова деспирализуется.

Этот процесс позволяет получить полиплоидные ядра, в которых увеличено содержание ДНК. Подобное встречается в колониеобразующих клетках красного костного мозга. Кроме того, наблюдаются случаи, когда молекулы ДНК увеличиваются в два раза, а число хромосом остается прежним. Они носят название политенных, и их можно обнаружить в клетках насекомых.

Что такое мейоз

Второй способ деления эукариотической клетки — мейоз. Во время такого процесса деления клетки получаются дочерние клетки, которые называются гаметы. У мужчин это сперматозоид, а у женщин яйцеклетка. Гаметы получают только половину генетической информации родительской клетки. Число хромосом уменьшается в два раза. 

 Схема мейоза‍

Затем гаметы могут объединяться, образуя новую клетку, сочетающую генетическую информацию обеих клеток-родителей — зиготу. Процесс слияния половых клеток называется оплодотворением. Если зигота совершит цепь митозов, сформируется новый организм. 

По промокоду BIO92021 вы получите бесплатный доступ к курсу биологии 9 класса, по промокоду BIO10112021 бесплатный доступ к курсу биологии 10 класса. Выберите нужный раздел и изучайте биологию вместе с домашней онлайн-школой «Фоксфорда»!

Каждая гамета человека содержит 23 хромосомы — гаплоидный набор (n). Когда гаметы объединяются, получается зигота с 46 хромосомами — диплоидный набор (2n). 

Во время мейоза одна клетка с 46 хромосомами делится дважды. Первое деление называется мейоз I, второе деление называется мейоз II. Интерфаза между двумя этапами деления мейоза настолько кратковременна, что практически незаметна, и в ней не происходит удвоение ДНК. В результате образуются четыре дочерние клетки, каждая с 23 хромосомами. 

Мейоз I подразделяется на четыре фазы, аналогичные фазам митоза:

  • Профаза I (2n4c) — занимает 90% времени. Происходит скручивание молекул ДНК и образование хромосом. Каждая хромосома состоит из двух гомологичных хроматид — 2n4c. Происходит конъюгация хромосом: гомологичные (парные) хромосомы сближаются и скручиваются, образуя структуры из двух соединённых хромосом — такие структуры называют тетрады, или биваленты. Затем гомологичные хромосомы начинают расходиться. При этом происходит кроссинговер — обмен участками между гомологичными хромосомами. В результате этого процесса создаются новые комбинации генов в потомстве. Растворяется ядерная оболочка. Разрушаются ядрышки. Формируется веретено деления.
  • ‍Метафаза I (2n4c) — биваленты выстраиваются на экваторе веретена деления, при этом ориентация центромер к полюсам абсолютно случайная.
  • Анафаза I (хромосомный набор к концу анафазы: у полюсов — 1n2c, в клетке — 2n4c) — гомологичные хромосомы отходят к разным полюсам, при этом сестринские хроматиды всё ещё соединены центромерой. За счёт случайной ориентации центромер распределение хромосом к полюсам также случайно, так как нити веретена прикрепляются произвольно. 
  • Телофаза I (1n2c) — происходит деспирализация хромосом. Если интерфаза между делениями длительна, может образоваться новая ядерная оболочка.

Мейоз I

Мейоз II подразделяется на четыре такие же фазы: 

  • Профаза II (1n2c) — восстанавливается новое веретено деления, ядерная мембрана растворяется, если образовывалась в телофазе I.
  • Метафаза II (1n2c) — хромосомы выстраиваются в экваториальной части веретена, а нити веретена прикрепляются к центромерам.
  • Анафаза II (хромосомный набор у каждого полюса — 1n1c, в клетке — 2n2c) — центромеры расщепляются, двухроматидные хромосомы разделяются, и теперь к каждому полюсу движется однохроматидная хромосома. 
  • Телофаза II (1n1c) — происходит деспирализация хромосом, формирование ядерных оболочек и разделение цитоплазмы; в результате двух делений из диплоидной материнской клетки получается четыре гаплоидных дочерних клетки. 

Мейоз II

Биологическое значение мейоза — образование гаплоидных клеток, отличающихся генетически друг от друга: половых клеток (гамет) у животных  и спор у растений. 

Эукариоты и прокариоты

Митоз встречается только в эукариотах. Прокариоты, в которых отсутствует ядро, делятся с помощью другого процесса, называемого бинарным делением. Митоз варьируется между организмами. Например, в организме животных происходит открытый митоз, где ядерная оболочка разрушается до того, как хромосомы отделяются, тогда как грибы подвергаются закрытому митозу, где хромосомы делятся внутри неповреждённого ядра.

Большое количество клеток животных претерпевает изменение формы, известное как округление митотических клеток, чтобы принять почти сферическую морфологию в начале митоза. Большинство клеток человека получаются путём деления митотических клеток. Важные исключения включают гаметы — сперматозоиды и яйцеклетки, которые получаются в процессе мейоза.

Задания на митоз в ЕГЭ по биологии

Задания на митоз в ЕГЭ по биологии встречаются и в первой, и во второй части. Каждое из таких заданий может принести вам от одного до трех баллов. Кстати, обязательно почитайте наш гайд для ЕГЭ по биологии 2021! Там мы рассказываем, какие задания и по каким темам вам могут встретиться.

Пример 1. В ядрах клеток слизистой оболочки кишечника позвоночного животного 36 хромосом. Какое число хромосом будет иметь ядро зиготы этого животного? В ответ запишите только соответствующее число.

Решение. Клетки слизистой оболочки кишечника — соматические, набор в них 2n.  А что такое зигота? Это оплодотворенная яйцеклетка. В ней сливается гаплоидный набор сперматозоида и гаплоидный набор яйцеклетки, в результате набор становится диплоидным (2n). Соответственно, число хромосом в зиготе будет совпадать с набором в любой из соматических клеток. Ответ: 36.

Пример 2. Установите соответствие между процессами, происходящими на разных стадиях жизненного цикла клетки: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ПРОЦЕССЫ   СТАДИИ
А) ускоренный метаболизмБ) спирализация хромосомВ) удвоение количества органоидовГ) образование веретена деленияД) формирование экваториальной пластинкиЕ) репликация ДНК   1) интерфаза2) митоз

Решение. Вспомним, что интерфаза — это подготовительная стадия, которая проходит перед делением клетки, а митоз – непосредственно деление. В интерфазу происходит ускорение обмена веществ, удвоение ДНК и органоидов. Хромосомы спирализуются в профазу, тогда же образуется веретено деления. Хромосомы выстраиваются по экватору и формируют метафазную пластинку в метафазе. 

Ответ: 121221

Пример 3. У крупного рогатого скота в соматических клетках 60 хромосом. Определите число хромосом и молекул ДНК в клетках печени перед началом деления и а анафазе митоза. Объясните полученные результаты на каждом этапе.

Решение. Набор хромосом и ДНК в соматической клетке 2n2c – 60 хромосом, 60 молекул ДНК.

Перед началом деления (в интерфазе) происходит репликация ДНК, набор 2n4c — 60 хромосом, 120 молекул ДНК. В анафазе набор 4n4с – 120 хромосом и 120 молекул ДНК, так как однохроматидные хромосомы расходятся к полюсам. 

Как видите, задания на митоз в ЕГЭ по биологии вполне реально решить! Немного практики — и заветные баллы у вас в кармане

Если хотите разобраться в остальных темах, обязательно обратите внимание на курсы MAXIMUM. Приходите к нам на бесплатную консультацию по подготовке к ЕГЭ — чем раньше приступите к подготовке, тем больше будет времени, чтобы найти все слабые места и проработать их

Записывайтесь и начните путь к высоким баллам ЕГЭ уже сейчас!

Жизненный цикл клетки

Жизненный цикл клетки – это время существованя клетки с момента первого деления до следующего деления, или до последнего деления (смерти клетки). 

Клетки делятся несколькими способами: 

  • Амитоз. Деление клетки осуществляется в интерфазе. В данном случае хромосомы не конденсируются, не образуется веретено деления, и ядерная оболочка не распадается. При амитозе ядро вытягивается и делится на две части путём перетяжки. Таким образом делятся, например, клетки злокачественных опухолей. 
  • Митоз. Непрямое деление, в результате которого, из одной клетки образуются две идентичные ей дочерние. Так делятся соматические клетки.
  • Мейоз. Этот способ деления осуществляется, когда происходит образование половых гамет.

Метафаза

После профазы наступает метафаза. В этой фазе спирализация хромосом достигает своего пика. Укороченные хромосомы начинают движение к центру клетки. Во время перемещения они располагаются одинаково в обеих частях. Здесь образуется метафазная пластинка. При рассмотрении клетки отчетливо видны хромосомы. Именно в метафазу их легко подсчитать.

После формирования метафазной пластинки проводится анализ набора хромосом, присущего данному типу клетки. Это происходит путем блокирования расхождения хромосом при помощи алкалоидов.

У каждого организма имеется свой набор хромосом. Например, у кукурузы их 20, а у садовой клубники — 56. В человеческом организме хромосом меньше, чем у ягоды, всего 46.

Открытие

Многочисленные описания деления клеток были сделаны в 18-19 веках с разной степенью точности. В 1835 году немецкий ботаник Гуго фон Моль описал деление клеток зеленой водоросли Cladophora glomerata , заявив, что размножение клеток происходит посредством деления клеток. В 1838 году Маттиас Якоб Шлейден подтвердил, что образование новых клеток в их внутренней части было общим законом для размножения клеток в растениях. Позднее эта точка зрения была отвергнута в пользу модели Моля благодаря вкладу Роберта Ремака и других.

В клетках животных деление клеток с митозом было обнаружено в клетках роговицы лягушки, кролика и кошки в 1873 году и впервые описано польским гистологом Вацлавом Майзелем в 1875 году.

Бютчли, Шнайдер и Фол могли также заявить об открытии процесса, известного в настоящее время как «митоз». В 1873 году немецкий зоолог Отто Бютчли опубликовал данные наблюдений за нематодами . Несколько лет спустя он открыл и описал митоз на основе этих наблюдений.

Термин «митоз», введенный Вальтером Флеммингом в 1882 году, происходит от греческого слова μίτος ( mitos , «нить основы»). Есть несколько альтернативных названий процесса, например, «кариокинез» (ядерное деление), термин, введенный Шлейхером в 1878 году, или «эквациональное деление», предложенный Августом Вейсманном в 1887 году. Однако также используется термин «митоз». в широком смысле некоторые авторы относятся к кариокинезу и цитокинезу вместе. В настоящее время «эквациональное деление» чаще используется для обозначения мейоза II , части мейоза, наиболее похожей на митоз.

Эволюция

Некоторые типы деления клеток у прокариот и эукариот

Существуют прокариотические гомологи всех ключевых молекул митоза эукариот (например, актинов, тубулинов). Являясь универсальным эукариотическим свойством, митоз, вероятно, возник в основе эукариотического древа. Поскольку митоз менее сложен, чем мейоз , мейоз мог возникнуть после митоза. Однако половое размножение с участием мейоза также является примитивной характеристикой эукариот. Таким образом, мейоз и митоз могли развиться параллельно из наследственных прокариотических процессов.

В то время как при делении бактериальной клетки после дупликации ДНК две кольцевые хромосомы прикрепляются к особому участку клеточной мембраны, митоз эукариот обычно характеризуется наличием множества линейных хромосом, кинетохоры которых прикрепляются к микротрубочкам веретена. В отношении форм митоза закрытый внутриядерный плевромитоз представляется наиболее примитивным типом, так как он больше похож на бактериальное деление.

Интерфаза

Митотический цикл состоит из двух последовательных стадий.

Непосредственно перед  делением клетка проходит интерфазу, или стадию покоя, функциональное значение которой в том, что во время неё синтезируется ДНК. Длительность стадии покоя составляет 90% и более в течение всего цикла клеточного деления. 

Интерфаза представлена тремя периодами:

Период Характеристика
Пресинтетический, или постмитотический Обозначается G1 или q1. Продолжительность этого периода 10 часов и более. Осуществляется сразу после деления клетки. Содержание генетического набора в клетке – 2n2c, диплоидный набор хромосом, каждая из которых имеет одну хроматиду. Здесь происходит восстановление структуры интерфазной клетки: окончательно формируется ядрышко; масса клетки увеличивается за счёт синтеза белка; происходит образование ферментов, участвующих в катализе реакции репликации; синтезируется белок; увеличивается количество различных видов рибонуклеиновой кислоты (РНК). Хромосомы представлены тонкими хроматиновыми нитями, каждая нить состоит из одной хромосомы. 
Синтетический Обозначается как S.  Продолжительность 6 – 10 часов. В данном периоде происходит удвоение (репликация, дупликация) ДНК, хромосомы становятся двухроматидными. Это необходимо для последующего митотического деления клетки. Также, на этом этапе продолжается рост клетки, начавшийся в пресинтетичском периоде, синтезируется РНК, белки – гистоны, в последующем соединяющиеся с ДНК. Генетический материал – 2n4c. 
Постсинтетический или премитотический Обозначение: G2 (q2).Содержание генетической информации – 2n4c. В этом периоде осуществляется подготовка к митозу, продолжается он 2 – 5 часов. Происходит усиленное образование энергии АТФ; синтезируются белки, которые необходимы для обеспечения процесса деления и образования веретена деления; начинается спирализация хромосом; значительно увеличивается объём ядра, а, следовательно, и масса цитоплазмы. Далее клетка непосредственно переходит к стадии митоза. 

Интерфаза

Прежде чем делящаяся клетка попадает в митоз, она подвергается периоду роста, называемому интерфазой. Около 90% времени клетки при нормальном клеточном цикле могут быть потрачены на интерфазу, которая осуществляется в три основные фазы:

  • Фаза G1: период до синтеза ДНК. В этой фазе клетка увеличивается в массе, подготавливаясь к делению.
  • S-фаза: период, в течение которого происходит синтез ДНК. В большинстве клеток эта стадия происходит за очень короткий промежуток времени.
  • Фаза G2: клетка продолжает синтез дополнительных белков увеличиваться в размерах.

В последней части интерфазы, клетка все еще имеет нуклеолы. Ядро ограничено ядерной оболочкой, а хромосомы дублируются, но находятся в форме хроматина. В клетках животных две пары центриолей, образованных из репликации одной пары, расположены за пределами ядра.

После фазы G2 наступает митоз, который в свою очередь состоит из нескольких стадий и завершается цитокинезом (делением клетки).