Жуткие голубые гиганты могут раскрыть тайны эволюции звёзд

Самые знаменитые звезды

Как бы не были огромны гиганты среди звезд, оценить их размеры и излучающийся свет невозможно с планеты Земля невооруженным глазом. А вот те космические объекты, которые человек может увидеть без бинокля на ночном небосводе, получили большую известность. Однако, чаще речь идет не об отдельных светилах, а о созвездиях.

Созвездие Большого Пса

В светящемся скоплении наиболее известен Сириус. Эта звезда одна из самых приближенных к Солнечной системе, поэтому ее трудно не заметить, находясь в любой точке планеты. Сириус представляет собой 2 компоненты – А и В. Первый компонент превышает Солнце в 2 раза. Звезду можно разглядеть на небосклоне даже днем.

Созвездие Тельца

Зодиакальное скопление может похвастаться супергигантом – Альдебараном. Еще одна популярная звезда, известная с древности. Ранее ее называли «Око Тельца» и «Воловий Глаз». Стоит отметить, что небесный гигант нередко встречается в художественных фильмах. Знаменита же звезда изумительным оранжевым свечением.

Созвездие Геркулеса

Целая семья, которая включает в себя 19 созвездий. Настоящей жемчужиной Геркулеса считается Большое Шаровое Скопление (М13). Причем наблюдать это явление можно в обычный бинокль.

При небольшом увеличении будет казаться, что это объект с «пушистым, блуждающим» светом. На профессиональных же телескопах можно разделить Шаровое Скопление на отдельные составляющие.

Жизнь и смерть Солнца

Начнем с того, что Солнце – это обычная звезда. Она озаряет Солнечную систему светом и теплом, устанавливая суточные циклы сна и бодрствования у всех живых организмов на нашей планете. Но Солнце не всегда будет таким. Наступит время, когда наша родная звезда погибнет, а вся Солнечная система превратится в очень неприятное место

Важно понимать, что все физические процессы протекающие на Солнце, в значительной степени определяют физику планет (по крайней мере ближайших к звезде)

Астрономы классифицируют Солнце как молодую звезду с высоким содержанием металлов. Это значит, что Солнце образовалось из останков более древних звезд. Текущий возраст нашего светила исследователи оценивают приблизительно в 4,6 миллиардов лет, а значит, звезда прожила примерно половину своей жизни, так как ее взросление – фаза главной последовательности – длится 10 миллиардов лет. После завершения этого срока наступит следующий этап ее эволюции. По мере того, как Солнце расходует запасы своего водородного топлива, оно становится все горячее, а его светимость увеличивается. К тому моменту, когда Солнце отметит свой 5,6 миллиардный день рождения, оно будет в 11 раз ярче, чем сегодня.

Ничто во Вселенной не вечно, тем более звезды

Исследователи полагают, что уже к этому моменту на нашей планете либо произойдет кардинальное изменение жизни, либо она и вовсе исчезнет. Вообще, некоторые ученые считают, что человеческая цивилизация погибнет задолго до того, как Солнце превратится в красного гиганта. Подробнее об этом я рассказывала в предыдущей статье.

Голубые сверхгиганты

Ригель

В отличие от красных, доживающих долгую жизнь гигантов, – это молодые и раскаленные звезды, превосходящие своей массой солнечную в 10-50 раз, а радиусом – в 20-25 раз. Их температура впечатляет – она составляет 20-50 тыс. градусов. Поверхность голубых сверхгигантов стремительно уменьшается из-за сжатия, при этом излучение внутренней энергии непрерывно растет и повышает температуру светила. Результатом такого процесса становится превращение красных сверхгигантов в голубые. Астрономы заметили, что звезды в своем развитии проходят различные стадии, на промежуточных этапах они становятся желтыми или белыми. Ярчайшая звезда созвездия Ориона – Ригель – отличный пример голубого сверхгиганта. Ее внушительная масса в 20 раз превышает Солнце, светимость выше в 130 тыс. раз.

Денеб

В созвездии Лебедя наблюдается звезда Денеб – еще один представитель этого редкого класса. Ее спектральный класс Ia, это – яркий сверхгигант. На небосводе по своей светимости эта далекая звезда может сравниться только с Ригелем. Интенсивность ее излучения сравнима с 196 тыс. Солнц, радиус объекта превосходит наше светило в 200 раз, а вес – в 19. Денеб быстро теряет свою массу, звездный ветер невероятной силы разносит ее вещество по Вселенной. Звезда уже вступила в период нестабильности. Пока ее блеск изменяется по небольшой амплитуде, но со временем станет пульсирующим. После исчерпания запаса тяжелых элементов, которые поддерживают стабильность ядра, Денеб, как другие голубые сверхгиганты, вспыхнет сверхновой, а его массивное ядро станет черной дырой.

Надежда есть

Современные исследования говорят, что жизнь на Земле появилась не ранее 1.5 миллиардов лет назад. И, вполне вероятно, это случилось в результате невероятного стечения обстоятельств. Некоторые ученые считают, что эта вероятность близка по своему значению к той, при которой на поверхности Марса самопроизвольно, и абсолютно случайно, собрался бы компьютер. А для того, чтобы жизнь на Земле стала многоклеточной, потребовалось еще более миллиарда лет. И еще через 2.75 миллиарда потребовалось для появления первых животных. Поэтому весьма маловероятно, что представители человечества увидят в лесах Тритона местных котиков. Скорее всего, в лучшем случае, там можно будет найти некоторые микробы. И, возможно, признаки многоклеточной жизни в мелких соленых морях. И это хорошо. Потому что нам не придется убивать уникальную местную флору и фауну, чтобы разместить в этих мирах свои поселения…

Наблюдаемые характеристики красных гигантов

К красным гигантам относят звёзды спектральных классов K и M классов светимости III и I соответственно, то есть с абсолютными звёздными величинами 0^m \ge M_V \ge -3^m у красных гигантов и MV < − 3m у красных сверхгигантов. Температура излучающей поверхности (фотосферы) красных гигантов сравнительно невелика (T_{ph} \approx 3000 — 5000K) и, соответственно, поток энергии с единицы излучающей площади невелик — в 2-10 раз меньше, чем у Солнца. Однако, светимость таких звёзд может достигать 105 − 106LSol, так как красные гиганты и сверхгиганты имеют очень большие радиусы. Характерные радиусы красных гигантов и сверхгигантов — от 100 до 800 солнечных радиусов.

Спектры красных гигантов характеризуются наличием молекулярных полос поглощения, максимум излучения приходится на красную и инфракрасную области спектра.

Как появляются звезды гиганты и сверхгиганты

Как известно, находясь на главной последовательности светило производит энергию благодаря реакциям, происходящим внутри ядра. То есть оно расходует водород. За счёт чего синтезируется гелий. Но он не участвует в термоядерных процессах.А вот после того, как водородный запас иссякает, ядро сжимается и в ход идёт гелий. При его сгорании внешние слои, наоборот, расширяются. Следовательно, увеличивается температура и площадь излучаемой поверхности. В результате светимость повышается. Однако высвобождение энергии становится меньше, и поверхность уменьшается. Как следствие, она охлаждается. Правда, дальнейшую судьбу решает масса звёздного тела.

UY Щита (Красный гипергигант)

Эволюция светил малой массы

Например, если массивность меньше 0,35 массы нашего Солнца, то эволюционировать в гигантское светило не сможет. Скорее всего, его ждёт стадия голубого, а затем белого карлика.При условии, что звезда имеет среднюю массу, а весь водород сгорит, ядро сожмётся. После этого начнётся горение водорода возле ядра. Что позволит внешним слоям расшириться и остыть. Причем светимость несколько увеличится.Собственно говоря, объект, прошедший стадию главной последовательности, в котором ещё не горит гелий, относится к классу звезды субгиганты.Возможно, что у светила масса гелиевого ядра увеличится до предела Чандрассекара. В таком случае, оно резко уплотнится и уменьшится. Либо ядро выродится, либо расширятся внешние слои. При последнем сценарии также возрастёт пространство конвективной зоны, а вещество перемешается. В итоге, тело станет красным гигантом.

Звезда Пистолет (Синий гипергигант)

Светила средней массы

Разумеется, массивность играет важную роль в развитии небесных тел, в том числе и звёзд. К примеру, учёные выявили как продолжают свою жизнь объекты с различными значениями по этой характеристике.

Сценарии развития:

  • С массой не более 0,4 солнечной, горение гелия не начинается. Тогда по окончании водорода внешняя оболочка сбрасывается. И образуется белый гелиевый карлик.
  • При массе больше 0,4 нашего Солнца в ядре вспыхивает гелий. В то же время внутреннее давление падает, светимость снижается и светило переходит на, так называемую, горизонтальную ветвь эволюции.
  • Когда масса несколько меньше 8 солнечных масс, а в ядре гелиевые ресурсы прекращаются, повышается углеродно-кислородное содержание. Далее ядро сжимается и вокруг запускается горение гелия. Причем перемешивание вещества приводит к росту размера и светимости. На этой стадии звёздный объект находится на асимптотической ветви с инертным центром. После чего он, спустя примерно миллион лет становится нестабильным, и формируется в углеродно-кислородный белый карлик.

Таким образом получается, что звезда прошедшая стадию красного гиганта называется белым карликом.

Большая масса

Что важно, при значениях больше 8 солнечных масс вслед за образованием углеродно-кислородного ядра в термоядерных реакциях начинает принимать участие и углерод. Между прочим, гелиевое сгорание запускается не вспышкой, а постепенно.По данным учёных, в светилах с массивностью от 8 до 12 Солнца в дальнейшем возможно горение других, более тяжёлых элементов

Правда, в них железо ещё не горит.Они проходят этапы эволюции по аналогии с представителями средних значений. Однако их светимость выше, а уцелевший белый карлик имеет другой состав. Если говорить точнее, он богат на кислород, магний и неон. В некоторых случаях может произойти взрыв сверхновой, но это очень редкое явление.

Арктур (Оранжевый гигант)

А вот при массе более 12 солнечных отмечается ещё более высокая светимость. Тогда их уже относят к сверхгигантам. В них синтез протекает с участием всё более тяжёлых элементов, вплоть до железа. Из-за чего образуется железное ядро, которое в последствии коллапсирует, то есть взрывается как сверхновая. В результате формируется нейтронная звезда или чёрная дыра.

Блицар, потомок нейтронной звезды

Звезды такого типа – гипотетические объекты, существование которых могло бы объяснить быстрые радиовсплески (FRB), первый из которых был обнаружен в 2011 году. Про блицары на Хабре уже писали, вкратце напомню суть этого явления.

В физике известен предел Оппенгеймера-Волкова, максимальная масса, при которой нейтронная звезда еще не превращается в черную дыру. При этом данный предел рассчитывается без учета вращения, присущего многим нейтронным звездам и унаследованного от родительской звезды. Центробежная сила, возникающая при таком вращении, не дает звезде «упасть» в черную дыру, поэтому нейтронная звезда может некоторое время существовать выше предела Оппенгеймера-Волкова. В этот период звезда генерирует сильное магнитное поле, из-за которого вокруг нее исчезает аккреционный диск. В результате при падении нейтронной звезды за горизонт событий от нее «отстреливается» не вещество, а только мощное магнитное поле, что и может быть зафиксировано как быстрый радиовсплеск.

Блицары также можно считать гипотетическими объектами, поскольку непосредственно они не зафиксированы. Такие небесные тела также называются «суронами», где SURON – аббревиатура, означающая «SUpramassive Rotating Neuron star» (подмассивная вращающаяся нейтронная звезда). Физика суронов подробно изложена в этой работе; также отмечается (раздел 3.3.2), что в состоянии сурона (блицара) может удерживаться примерно 3% всех нейтронных звезд — большинству из них центробежной силы все-таки не хватает, чтобы балансировать на грани горизонта событий.

Строение красных гигантов

И «молодые», и «старые» красные гиганты имеют схожие наблюдаемые характеристики, объясняющиеся сходством их внутреннего строения — все они имеют горячее плотное ядро и очень разреженную и протяжённую оболочку. Наличие протяжённой и относительно холодной оболочки приводит к интенсивному звёздному ветру: потери массы при таком истечении вещества достигают 10−6—10−5 масс Солнца в год.

Средняя плотность красных гигантов может быть в миллион раз меньше плотности воды (для сравнения, средняя плотность Солнца примерно равна плотности воды, 1 г/см3). При этом отношение средней плотности к плотности ядра может составлять 1:108 (у Солнца примерно 1:50). Около 10% массы красного гиганта приходится на его очень малое по размерам ядро, в котором (или в наружном слое которого) происходят термоядерные реакции; остальная часть массы звезды приходится на очень протяжённую оболочку, которая переносит выделившуюся в ядре энергию к поверхности.

В процессе эволюции звёзд главной последовательности происходит «выгорание» водорода — нуклеосинтез с образованием гелия в pp-цикле и (для массивных звёзд) в CNO-цикле. Такое выгорание приводит к накоплению в центральных частях звезды гелия, который при сравнительно низких температурах и давлениях ещё не может вступать в термоядерные реакции. Прекращение энерговыделения в ядре звезды ведёт к сжатию и, соответственно, к повышению температуры и плотности ядра. Рост температуры и плотности в звёздном ядре приводит к условиям, в которых активируется новый источник термоядерной энергии: выгорание гелия (тройная гелиевая реакция или тройной альфа-процесс), характерный для красных гигантов и сверхгигантов. Красный гигант Автор статьи: astroson.com 2017-04-20

Терминология

Термин «звезда-гигант» ввёл датский астроном Эйнар Герцшпрунг в 1906 году, когда обнаружил, что звёзды классов K и M делятся на два класса по светимости: одни значительно ярче Солнца, а другие — значительно тусклее. Тем не менее, звёзды ранних спектральных классов отличаются гораздо слабее, а могут и вообще быть неразличимы, и в таких случаях используется спектральный анализ. Кроме того, термины «белый карлик» и «голубой карлик» вообще не относятся к звёздам главной последовательности, поэтому может возникать путаница. Так, например, звёзды главной последовательности ранних спектральных классов могут называться «белыми гигантами».

Характеристики[править | править код]

Шаровое звёздное скопление NGC 288. Яркие жёлтые и красные звёзды являются звёздами ветви красных гигантов

Красные гиганты — звёзды поздних спектральных классов: K и M, и низких температур — 3000—5000 K, поэтому они излучают в основном в красном и инфракрасном свете. Вместе с этим у красных гигантов большие радиусы — в диапазоне приблизительно 10—200 R, и, как следствие, высокие светимости — от 102 до 104L, а их абсолютные звёздные величины в основном лежат в диапазоне от 0m до −3m. Красные гиганты относятся к классу светимости III и занимают верхнюю правую часть диаграммы Герцшпрунга — Рассела. В ходе эволюции (см. ниже) красными гигантами становятся звёзды с массами не менее 0,2 M и не более 10 M.

Внутреннее строение красных гигантов различается в зависимости от их эволюционной стадии (см. ниже), но в любом случае в их ядрах уже исчерпан водород, а ядерное горение водорода происходит в слоевом источнике. Ядро сначала состоит из гелия и является инертным, затем в нём начинается горение гелия, при котором синтезируется углерод и кислород. Когда гелий исчерпывается, ядро красного гиганта снова становится инертным и состоит из углерода и кислорода. Оболочки красных гигантов конвективны и в некоторых случаях конвекция способна выносить элементы, синтезированные в недрах, на поверхность звезды, что может приводить к аномалиям химического состава.

Внешние слои красных гигантов протяжённы и сильно разрежены, в среднем плотность таких звёзд составляет порядка 10−4—10−3 г/см3, но у них очень плотные ядра: в определённый момент эволюции масса ядра может составлять четвёртую часть массы звезды при радиусе в 1000 раз меньше радиуса всей звезды — плотность ядра в таком случае равна 3,5⋅105 г/см3. Для красных гигантов характерен сильный звёздный ветер — на поздних стадиях темп потери массы может достигать 10−4M в год. Часто у красных гигантов наблюдается переменность различных типов, в том числе и с высокой амплитудой, особенно у наиболее ярких из них: они могут быть миридами, полуправильными переменными и переменными других типов.

Красные гиганты часто рассматриваются вместе с красными сверхгигантами: последние крупнее и ярче, но и те, и другие звёзды относятся к поздним спектральным классам и в их спектрах наблюдаются полосы поглощения молекул. Красные гиганты и сверхгиганты имеют очень плотные небольшие ядра и разреженные конвективные оболочки.

Доля красных гигантов среди звёзд невелика — у звёзд, которые становятся красными гигантами, эта эволюционная стадия длится не более 10 % срока их жизни, однако благодаря высокой яркости они видны с больших расстояний, и среди видимых невооружённым глазом звёзд их около 10 %. Красными гигантами являются, например, Арктур и Альдебаран.

BI Лебедя

Этот красный супергигант относится к категории переменных объектов, располагается созвездии Лебедя. Приблизительная удалённость от Солнца составляет 5500 световых лет.

Радиус BI Лебедя примерно от 916-1240 радиусов Солнца. Массой превышает нашу звезду в 20 раз, светимостью в 25 0000 раз. Температура верхнего слоя этого космического объекта от 3500 до 3800 К. Согласно данным последних исследований значение температуры на поверхности звезды сильно меняется из-за интенсивных термоядерных реакций недр. В период наибольших всплесков термоядерной активности поверхностная температура может достигать значения 5500 К.

Планеты [ править ]

Красные гиганты с известными планетами: HD 208527 , HD 220074 M-типа и, по состоянию на февраль 2014 г., несколько десятков известных K-гигантов, включая Pollux , Gamma Cephei и Iota Draconis .

Перспективы обитаемости править

Хотя традиционно было предложена эволюция звезды в красный гигант будет оказывать свою планетарную систему , если она присутствует, непригодные для жизни, некоторые исследования показывают , что в ходе эволюции 1  M звезд вдоль красного гиганта отрасли, он может затаить обитаемая зона в течение нескольких миллиардов лет на 2 астрономических единицах (а.е.), чтобы около 100 миллионов лет в 9 а.е., давая достаточно , возможно , время жизни развиваться на подходящем мире. После стадии красного гиганта у такой звезды будет зона обитаемости между 7 и 22 а.е. еще на один миллиард лет. Более поздние исследования уточнили этот сценарий, показав, как для 1  M Обитаемая зона длится от 100 миллионов лет для планеты с орбитой, подобной орбите Марса, до 210 миллионов лет для планеты, которая вращается на расстоянии Сатурна от Солнца, максимальное время (370 миллионов лет), соответствующее планетам, вращающимся на орбите расстояние до Юпитера . Однако для планет, вращающихся вокруг звезды 0,5  M по орбитам, эквивалентным орбитам Юпитера и Сатурна, они будут находиться в пригодной для жизни зоне в течение 5,8 и 2,1 млрд лет соответственно; для звезд более массивных, чем Солнце, времена значительно короче.

Увеличение планет править

По состоянию на июнь 2014 года около звезд-гигантов было обнаружено пятьдесят планет-гигантов. Однако эти планеты-гиганты более массивны, чем планеты-гиганты, расположенные вокруг звезд солнечного типа. Это может быть связано с тем, что звезды-гиганты более массивны, чем Солнце (менее массивные звезды по-прежнему будут на главной последовательности и еще не станут гигантами), и ожидается, что более массивные звезды будут иметь более массивные планеты. Однако массы планет, обнаруженных вокруг звезд-гигантов, не коррелируют с массами звезд; следовательно, планеты могут расти в массе во время фазы красных гигантов звезд. Увеличение массы планеты может быть частично связано с аккрецией от звездного ветра, хотя гораздо больший эффект будет иметь полость Роша.переполнение, вызывающее перенос массы от звезды к планете, когда гигант расширяется на орбитальное расстояние планеты.

Гипергиганты

Гипергигант VY Большого Пса выбрасывает огромное количество газа во время своей вспышкиЕсли наибольшую звезду невозможно найти практически, может, стоит её разработать теоретически? Т.е., найти некий предел, после которого существование звезды уже не может быть звездой. Однако даже здесь современная наука сталкивается с проблемой. Современная теоретическая модель эволюции и физики звёзд не объясняют многого из того, что существует фактически и наблюдается в телескопы. Примером тому служат гипергиганты.

Астрономам не раз приходилось поднимать планку предела звёздной массы. Такой предел впервые ввёл в 1924 году английский астрофизик Артур Эддингтон. Получив кубическую зависимость светимости звёзд от их массы.

Эддингтон понял, что звезда не может накапливать массу бесконечно. Яркость возрастает быстрее массы, и это рано или поздно приведёт к нарушению гидростатического равновесия. Световое давление нарастающей яркости будет буквально сдувать внешние слои звезды.

Предел, рассчитанный Эддингтоном, составлял 65 солнечных масс. В последствие астрофизики уточняли его расчёты, добавляя в них неучтённые компоненты и применяя мощные компьютеры. Так современный теоретический предел массы звезд составляет 150 солнечных масс.

В представлении художника R136a1 является самой массивной из известных ныне звёзд. Кроме неё значительными массами обладает ещё несколько звёзд, число которых в нашей галактике можно пересчитать по пальцам. Такие звёзды назвали гипергигантами. Заметим, что R136a1 значительно меньше звёзд, которые, казалось бы, должны быть ниже её по классу – к примеру, сверхгиганта UY Щита. Всё потому что гипергигантами называет не самые крупные, а именно самые массивные звёзды. Для таких звёзд создали отдельный класс на диаграмме спектр-светимости (O), расположенных выше класса сверхгигантов (Ia). Точной начальной планки массы гипергиганта не установлено, но, как правило, их масса превышает 100 солнечных. Ни одна из крупнейших звёзд «большой десятки» не дотягивает до этих пределов.

Видео: Самые большие звезды во Вселенной

https://youtube.com/watch?v=5V5w4a2S6R4

https://youtube.com/watch?v=_LKEF2PiIcE

http://o-kosmose.net/zvezdyi-vselennoi/

https://basetop.ru/samaya-bolshaya-zvezda-vo-vselennoy-ndash-uy-shhita/

http://pooha.net/nature/space/4-stars

http://spacegid.com/samaya-bolshaya-zvezda-vo-vselennoy.html

Звезды гиганты, их названия и примеры

По данным астрономов, к гигантскому виду относят Арктур, Антарес, Поллукс и другие. Стоит отметить, что популярная звезда Альдебаран является сверхгигантом.Например, гигантский красный представитель класса находится в созвездии Кита — это известная Мира. Или Тубан в созвездии Дракона, относящийся к белым светилам.Конечно же, это не всё. На самом деле, их очень много и перечислять подряд, наверное, не имеет смысла.

Звезда Мира

Итак, мы узнали что собой представляют не только гигантские звезды, но и сверхгиганты.Безусловно, каждая яркая звезда это не просто красивая оболочка. Характеристика любой из них очень любопытная, а также раскрывает совокупность свойств, жизненный путь

Более того, исследование отдельно взятого космического объекта или их групп играет важное значение для понимания того, как устроен наш мир.За ней интересно наблюдать и изучать её особенности. Как много еще всего во Вселенной непостижимого и прекрасного!

Изменчивость

Некоторые красные гиганты — переменные с большой амплитудой. Многие из самых ранних известных переменных звезд являются переменными Миры с регулярными периодами и амплитудами нескольких величин, полуправильными переменными с менее очевидными периодами или несколькими периодами и немного более низкими амплитудами, а также медленными нерегулярными переменными без очевидного периода. Они долгое время считались звездами асимптотической ветви гигантов (AGB) или сверхгигантами, а сами звезды ветви красных гигантов (RGB) обычно не считались переменными. Несколько явных исключений были сочтены звездами AGB с низкой светимостью.

Исследования в конце 20-го века начали показывать, что все гиганты класса M изменчивы с амплитудами на 10 милли-звездных величин и более, и что гиганты позднего класса K, вероятно, также будут переменными с меньшими амплитудами. Такие переменные звезды были среди наиболее ярких красных гигантов, близких к вершине RGB, но трудно было спорить, что все они на самом деле были звездами AGB. Звезды показали соотношение амплитуды периода с переменными большей амплитуды, пульсирующими медленнее.

Обзоры с помощью микролинзирования в 21 веке обеспечили чрезвычайно точную фотометрию тысяч звезд за многие годы. Это позволило открыть множество новых переменных звезд, часто очень малых амплитуд. Были обнаружены множественные зависимости период-светимость , сгруппированные в области с гребнями близко расположенных параллельных отношений. Некоторые из них соответствуют известным Мирасам и полурегулярным звездам, но был определен дополнительный класс переменных звезд: красные гиганты малой амплитуды OGLE или OSARG . OSARG имеют амплитуды в несколько тысячных величины и полурегулярные периоды от 10 до 100 дней. Обзор OGLE опубликовал до трех периодов для каждого OSARG, что указывает на сложную комбинацию пульсаций. Многие тысячи OSARG были быстро обнаружены в Магеллановых облаках , как звезды AGB, так и звезды RGB. С тех пор был опубликован каталог 192 643 OSARG в направлении центральной выпуклости Млечного Пути . Хотя около четверти OSARG Magellanic Cloud показывают длинные вторичные периоды, очень немногие OSARG галактического типа это делают.

RGB OSARG следуют трем близко расположенным отношениям период-светимость, соответствующим первому, второму и третьему обертонам моделей радиальной пульсации для звезд определенных масс и светимости, но также присутствуют дипольные и квадрупольные нерадиальные пульсации, приводящие к полу -регулярность вариаций. Основная мода не отображается, и основная причина возбуждения не известна. Стохастическая конвекция была предложена как причина, подобная солнечным колебаниям .

У звезд RGB были обнаружены два дополнительных типа вариаций: длинные вторичные периоды, которые связаны с другими вариациями, но могут показывать большие амплитуды с периодами в сотни или тысячи дней; и эллипсоидальные вариации. Причина длинных вторичных периодов неизвестна, но было высказано предположение, что они связаны с взаимодействиями с маломассивными спутниками на близких орбитах. Также считается, что эллипсоидальные вариации создаются в двойных системах, в данном случае в контактных двойных системах, где искаженные звезды вызывают строго периодические изменения при движении по орбите.

Планеты [ править ]

Красные гиганты с известными планетами: HD 208527 , HD 220074 M-типа и, по состоянию на февраль 2014 г., несколько десятков известных K-гигантов, включая Pollux , Gamma Cephei и Iota Draconis .

Перспективы обитаемости

Хотя традиционно было предложена эволюция звезды в красный гигант будет оказывать свою планетарную систему , если она присутствует, непригодные для жизни, некоторые исследования показывают , что в ходе эволюции 1  M звезд вдоль красного гиганта отрасли, он может затаить обитаемая зона в течение нескольких миллиардов лет на 2 астрономических единицах (а.е.), чтобы около 100 миллионов лет в 9 а.е., давая достаточно , возможно , время жизни развиваться на подходящем мире. После стадии красного гиганта у такой звезды будет зона обитаемости между 7 и 22 а.е. еще на один миллиард лет. Более поздние исследования уточнили этот сценарий, показав, как для 1  M Обитаемая зона длится от 100 миллионов лет для планеты с орбитой, подобной орбите Марса, до 210 миллионов лет для планеты, которая вращается на расстоянии Сатурна от Солнца, максимальное время (370 миллионов лет), соответствующее планетам, вращающимся на орбите расстояние до Юпитера . Однако для планет, вращающихся вокруг звезды 0,5  M по орбитам, эквивалентным орбитам Юпитера и Сатурна, они будут находиться в пригодной для жизни зоне в течение 5,8 и 2,1 млрд лет соответственно; для звезд более массивных, чем Солнце, времена значительно короче.

Увеличение планет

По состоянию на июнь 2014 года около звезд-гигантов было обнаружено пятьдесят планет-гигантов. Однако эти планеты-гиганты более массивны, чем планеты-гиганты, расположенные вокруг звезд солнечного типа. Это может быть связано с тем, что звезды-гиганты более массивны, чем Солнце (менее массивные звезды по-прежнему будут на главной последовательности и еще не станут гигантами), и ожидается, что более массивные звезды будут иметь более массивные планеты. Однако массы планет, обнаруженных вокруг звезд-гигантов, не коррелируют с массами звезд; следовательно, планеты могут расти в массе во время фазы красных гигантов звезд. Увеличение массы планеты может быть частично связано с аккрецией от звездного ветра, хотя гораздо больший эффект будет иметь полость Роша.переполнение, вызывающее перенос массы от звезды к планете, когда гигант расширяется на орбитальное расстояние планеты.

Борьба с вредителями и заболеваниями

Бурая пятнистость

Меры борьбы:

  • регулярно проветривать теплицу, удалять сорняки;
  • при поражении опрыскать кусты противогрибковым препаратом;
  • зараженные растения удалить
Тля

Меры борьбы:

  • регулярная прополка грядок, прореживание густых посадок;
  • при поражении часть тли смыть водой из шланга, куст опрыскать раствором нашатырного спирта
Слизни

Меры борьбы:

  • замульчировать грядки мелкими сосновыми опилками;
  • обработать растения раствором чеснока;
  • в междурядьях насыпать смесь золы с черным перцем или порошком горчицы

Для профилактики рассаду обрабатывают инсектицидами еще за 1-2 недели до пересадки в теплицу или в грунт. Можно использовать любой эффективный препарат:

  • «Фундазол»;
  • «Профит»;
  • «Топаз»;
  • «Скор»;
  • бордосская жидкость.

Для борьбы с насекомыми используют народные средства:

  • раствор пищевой соды;
  • раствор мыльной стружки с золой;
  • настой шелухи лука;
  • настой перцев чили;
  • отвар картофельной ботвы.

Также хорошо помогают инсектициды:

  • «Фитоверм»;
  • «Матч»;
  • «Конфидор»;
  • «Актара»;
  • «Каратэ».

Создание Красного Супергиганта

Как образуются красные супергиганты? Чтобы понять, что они из себя представляют, важно знать, как звезды меняются со временем. Звезды проходят определенные шаги на протяжении всей своей жизни

Изменения, которые они испытывают, называются «звездной эволюцией». Это начинается со звездообразования и юного звездного капюшона. После того, как они родились в облаке газа и пыли и затем зажгли водородный синтез в своих ядрах, звезды обычно живут на том, что астрономы называют «главной последовательностью». В этот период они находятся в гидростатическом равновесии. Это означает, что ядерный синтез в их ядрах (где они сливаются с водородом для создания гелия) обеспечивает достаточно энергии и давления, чтобы удержать вес их внешних слоев от коллапса внутрь.

Примечания

  1. Giant star, entry in Astronomy Encyclopedia, ed. Patrick Moore, New York: Oxford University Press, 2002. ISBN 0-19-521833-7.
  2. Giant star, entry in Cambridge Dictionary of Astronomy, Jacqueline Mitton, Cambridge: Cambridge University Press, 2001. ISBN 0-521-80045-5.
  3. ↑ giant, entry in The Facts on File Dictionary of Astronomy, ed. John Daintith and William Gould, New York: Facts On File, Inc., 5th ed., 2006. ISBN 0-8160-5998-5.
  4. Evolution of Stars and Stellar Populations, Maurizio Salaris and Santi Cassisi, Chichester, UK: John Wiley & Sons, Ltd., 2005. ISBN 0-470-09219-X.
  5. Blowing Bubbles in the Cosmos: Astronomical Winds, Jets, and Explosions, T. W. Hartquist, J. E. Dyson, and D. P. Ruffle, New York: Oxford University Press, 2004. ISBN 0-19-513054-5.

С этим читают