Цепи в клетке: данные об устройстве митохондрий помогут лечить сердце

ПРИМЕРЫ ЗАДАНИЙ

1) зародыш с образовавшейся нервной трубкой 2) многоклеточный однослойный зародыш с полостью тела 3) многоклеточный трехслойный зародыш с полостью тела 4) многоклеточный двухслойный зародыш А9. Дифференциация клеток, органов и тканей происходит в результате 1) действия определенных генов в определенное время 2) одновременного действия всех генов 3) гаструляции и бластуляции 4) развития определенных органов А10.4Какая стадия эмбрионального развития позвоночных животных представлена множеством неспециализированных клеток?

1) бластула 3) ранняя нейрула 2) гаструла 4) поздняя нейрула В1. Что из перечисленного относится к эмбриогенезу?

1) оплодотворение 4) сперматогенез 2) гаструляция 5) дробление 3) нейрогенез 6) овогенез В2. Выберите признаки, характерные для бластулы 1) зародыш, у которого сформирована хорда 2) многоклеточный зародыш с полостью тела 3) зародыш, состоящий из 32 клеток 4) трехслойный зародыш 5) однослойный зародыш с полостью тела 6) зародыш, состоящий из одного слоя клеток ВЗ. Соотнесите органы многоклеточного зародыша с зародышевыми листками, из которых закладываются эти органы С1. Приведите примеры прямого и непрямого постэмбрионального развития на примере насекомых.

3.4. Генетика, ее задачи. Наследственность и изменчивость – свойства организмов. Основные генетические понятия Основные термины и понятия, проверяемые в экзаменационной работе: аллельные гены, анализирующее скрещивание, взаимодействие генов, ген, генотип, гетерозиготность, гипотеза чистоты гамет, гомозиготность, дигибридное скрещивание, законы Г. Менделя, количественные признаки, кроссинговер, летали, 4 Этот вопрос встречается в экзаменационной работе, однако в ряде учебников нет таких понятий, как ранняя нейрула (Д.К. Беляев) и нейрула (И.Н. Пономарева). Этот вопрос предполагает следующие рассуждения: бластула состоит из одинаковых клеток. Двухслойные животные – кишечнополостные и губки на стадии гаструлы заканчивают свое развитие и имеют специализированные клетки. Они не проходят стадий нейрулы, на которых закладываются нервная труба и остальные органы. Следовательно, правильный ответ – 1– бластула.

множественные аллели, моногибридное скрещивание, независимое наследование, неполное доминирование, правило единообразия, расщепление, фенотип, цитологические основы законов Менделя.

Pages:   | 1 | 2 | 3 | 4 | 5 |   …   | 7 |
 

Круговорот протонов

Митохондрии снабжают организм энергией и делают это в два этапа. На первом этапе они сжигают питательные вещества в кислороде и откачивают положительно заряженные частицы наружу, а на втором — протоны возвращаются внутрь митохондрий и происходит синтез молекулы АТФ — источника энергии, пояснил ведущий научный сотрудник МГУ им. М.В. Ломоносова и гендиректор компании «Митотех» Максим Скулачёв. За эти процессы отвечают две разные системы, но из общефизических соображений было бы разумно расположить источник энергии и потребителя энергии в одном месте, образовав единый суперкомплекс, добавил он. Ученые уже долгое время строили гипотезы о существовании такого суперкомплекса, и теперь они подтвердились, подчеркнул эксперт.

Цепи в клетке

Фото: Depositphotos

— Ученым Курчатовского института удалось наконец увидеть эти образования с помощью метода криоэлектронной томографии и подтвердить существование суперкомплексов. Для биологии это удивительное событие, — сказал Максим Скулачёв.

Знания, объясняющие функционирование митохондрий клеток, позволят более точно определять терапевтические мишени, проводить диагностику митохондриальных и возрастозависимых заболеваний, включая ишемическую болезнь сердца, сказала «Известиям» заведующая лабораторией молекулярно-биологических и нейробиологических проблем и биоскрининга МФТИ Елена Петерсен. По ее словам, основываясь на этих данных, можно разработать лечение, направленное на подавление самих механизмов развития болезней. Оно позволит восстанавливать нормальное функционирование митохондрий, клеток и тканей в целом.

— Помимо каких-то функциональных характеристик работы митохондрий, теперь мы сможем сказать, где конкретно и как происходит процесс передачи энергии в клетке. Можем следить за ним, контролировать и соответственно выстраивать стратегию терапии, — сказала Елена Петерсен.

Цепи в клетке

Фото: РИА Новости/Алексей Сухоруков

Особый интерес могут представлять дальнейшие исследования универсальности организации митохондрий в других тканях, а также механизмов регуляции этой структуры и ее физиологического значения для организма, добавила профессор Инженерно-физического института биомедицины НИЯУ МИФИ Елена Сарапульцева. Данные, полученные учеными Курчатовского института, могут приобрести практическое применение при создании препаратов, поддерживающих молекулярно-кластерную структуру митохондрий у пациентов с сердечной недостаточностью и возрастными заболеваниями, отметила она.

Рост и развитие клетки растений

Клетка растений родятся в образовательной ткани. Там они все внешне одинаковые. Различаются химическим составом, особенностями строения ядер и органелл. В маленьких клетках все части мелкие, недоразвитые. В митохондриях не развиты кристы, ядро мелкое с крупным ядрышком, много небольших вакуолей, рибосомы не прикреплены к эндоплазматической сети.

С возрастом клетка растений растёт – увеличивается в размере за счёт растяжения и увеличения центральной вакуоли при слиянии мелких пузырьков. И развивается. Процесс развития клетки сопровождается изменением, превращением в часть какой-либо ткани растения. Она становится либо одной из покровных клеток, либо проводящих с толстыми стенками и без ядра и т.д. В ней дозревают хлоропласты и митохондрии, большинство рибосом прикрепляются к ЭПС, утолщается клеточная оболочка, клетка теряет способность к делению и становится частью ткани организма.

Развитие и рост клетки растений

Искусственные клетки с насосом — в чем их польза

Как я сказал выше, способность клеток поглощать питательные вещества в необходимом для них количестве является главным условием для жизни организмов. Возможно, ученым удастся доработать капсулы, и тогда они действительно будут похожи на живые клетки.

Однако, даже сейчас изобретению уже можно найти применение. К примеру, его можно использовать как фильтр, к примеру, для очистки жидкостей от загрязнений или устранения бактерий. Причем бактерии и загрязняющие вещества теоретически можно разрушать прямо внутри пузырьков. Для этого нужно лишь предварительно заполнять их определенными реагентами.

Ученые не собираются останавливаться на достигнутом и будут продолжать работать над усовершенствованием искусственных клеток. Об их достижениях мы будем сообщать на нашем , поэтому подписывайтесь, чтобы не пропустить. Напомню, ранее мы рассказывали о том, что ученые придумали как выращивать клетки со встроенными датчиками, которые следят за процессами, которые происходят внутри них.

Световая фаза фотосинтеза

Чтобы лучше понять, что происходит во время фотосинтеза, разберём фазы фотосинтеза. Световая фаза фотосинтеза включает в себя фотохимические и фотофизические процессы, и может быть поделена на три этапа:

  1. Фаза поглощения — энергия света улавливается при помощи светособирающих комплексов, переходит в энергию электронного возбуждения пигментов, передаётся в реакционный центр фотосистем I и II. 
  2. Фаза реакционных центров — энергия электронного возбуждения пигментов светособирающих комплексов используется для активации реакционных центров фотосистем. В реакционном центре электрон от возбуждённого хлорофилла передаётся другим компонентам электрон-транспортной цепи, пигмент после отдачи электрона переходит в окисленное состояние и становится способным, в свою очередь, отнимать электроны у других веществ. Именно в этом процессе происходит преобразование физической формы энергии в химическую.
  3. Фаза электрон-транспортной цепи — электроны переносятся по цепи переносчиков, образуются АТФ, НАДФН, O2. Необходимо, чтобы каждый переносчик электрон-транспортной цепи поочерёдно восстанавливался и окислялся, обеспечивая таким образом перенос энергии электронов. Любой этап переноса электрона сопровождается высвобождением или поглощением энергии. Часть энергии теряется. На некоторых участках электрон-транспортной цепи перенос электрона сопряжён с переносом протона.

Для того чтобы понять, что происходит во время фазы фотосинтеза, рассмотрим эти процессы подробнее. Кванты света улавливаются светособирающими комплексами фотосистемы I — молекула хлорофилла в составе светособирающего комплекса переходит в возбуждённое состояние, и энергия передаётся в реакционный центр фотосистемы I. Происходит возбуждение молекул хлорофилла фотосистемы I,   отщепляется электрон. Пройдя по цепочке внутренних компонентов фотосистемы I и внешних переносчиков, электрон в конце концов попадает к НАДФ+ — образуется восстановитель НАДФН. Получается, что хлорофилл фотосистемы I отдал электрон и приобрёл положительный заряд, и для дальнейшего функционирования необходимо восстановить нейтральность молекулы, получить электрон, чтобы закрыть «дырку». Этот электрон приходит от фотосистемы II.

На светособирающие комплексы фотосистемы II попадают кванты света — происходит возбуждение молекулы хлорофилла фотосистемы II, молекула хлорофилла отдаёт электрон и переходит в окисленное состояние. Нехватку электрона хлорофилл восполняет благодаря фотолизу воды, при этом образуется протоны H+, а также важный побочный продукт фотосинтеза — кислород. По цепи переносчиков электрон от хлорофилла фотосистемы II попадает к хлорофиллу реакционного центра фотосистемы I и восстанавливает его. Теперь этот хлорофилл может снова поглощать энергию кванта света и отдавать электрон в электрон-транспортную цепь.

Протоны, попадающие во внутритилакоидное пространство, используются для синтеза АТФ. С помощью фермента АТФ-синтазы за счёт градиента протонов образуется АТФ из АДФ и фосфата. Под градиентом понимают неравномерное распределение: во внутритилакоидном пространстве H+ больше, в строме — меньше. Поэтому частицы стремятся проникнуть в строму, переходят в неё через АТФ-синтазу, а в процессе пути сквозь белковый комплекс отдают ему часть энергии, которая и используется для синтеза АТФ. 

Подготовительный этап

На этой фазе совершается распад больших пищевых полимеров на более мелкие образования. В желудочно-кишечном тракте многоклеточных существ осуществляется ферментативный пищеварительный распад, в то время как у существ одноклеточных он происходит при помощи лизосом (клеточных органоидов, ответственных за расщепление биополимеров).

В это же время полисахариды (высокомолекулярные углеводы) распадаются на дисахариды и моносахариды. Затем белки превращаются в аминокислоты, а жиры в чистый глицерин и прочие жирные соединения.

В результате описанных выше преобразований образуется определенное количество энергии в виде тепла. АТФ при этом еще не образуется. Зато полученные мономеры могут участвовать в метаболизме для синтеза веществ, необходимых для получения силы.

Живая материя использует, прежде всего, углеводы, в то время как жиры, будучи источником энергии первого резерва, исчерпываются по окончании углеродного запаса. Исключением выступают скелетные мышцы, в них предпочтение отдается наличию жиров, а не глюкозе. Белки при этом расходуются гораздо позже, уже после исчерпания запасов углеводов и жиров.

Какое количество АТФ содержится в организме?

Выберите верную характеристику беспозвоночного животного А) у кольчатых червей имеется кровеносная система Б) в члениках круглых паразитических червей содержатся яйца В) плоские черви имеют сквозной кишечник Г) моллюски обладают лучевой симметрией

2249. У резус-отрицательных людей, по сравнению с резус-положительными, эритроциты крови отличаются по составу А) липидов Б) углеводов В) минеральных веществ Г) белков

2250. При разрушении клеток височной доли коры больших полушарий человек А) получает искаженное представление о форме предметов Б) не различает силу и высоту звука В) теряет координацию движений Г) не различает зрительные сигналы

Конспект

Еще можно почитать

<<Предыдущие 10Cледующие 10>>

Д.В.Поздняков, 2009-2018

Adblock detector

1. Какие слова пропущены в предложении и заменены буквами (а—г)?

«В состав молекулы АТФ входит азотистое основание (а), пятиуглеродный моносахарид (б) и (в) остатка (г) кислоты.»

Буквами заменены следующие слова: а – аденин, б – рибоза, в – три, г – фосфорной.

2. Сравните строение АТФ и строение нуклеотида. Выявите сходство и различия.

Фактически АТФ представляет собой производное аденилового нуклеотида РНК (аденозинмонофосфата, или АМФ). В состав молекул обоих веществ входит азотистое основание аденин и пятиуглеродный сахар рибоза. Различия связаны с тем, что в составе аденилового нуклеотида РНК (как и в составе любого другого нуклеотида) есть лишь один остаток фосфорной кислоты, и отсутствуют макроэргические (высокоэнергетические) связи. Молекула АТФ содержит три остатка фосфорной кислоты, между которыми имеются две макроэргические связи, поэтому АТФ может выполнять функцию аккумулятора и переносчика энергии.

3. Что представляет собой процесс гидролиза АТФ?

Ядро и наследственная информация

Основная функция ядра клетки – хранение и передача наследственной (генетической) информации обо всех белках организма. Один из видов белков – ферменты, отвечают за биохимические реакции. Поэтому можно сказать, что в ядре запрограмированы все процессы организма.

Наследственная информация содержится в 46 хромосомах. Одна хромосома образована молекулой ДНК (дезоксирибонуклеиновой кислоты) примерно 5 см длиной. Такая огромная ДНК умещается внутри ядра благодаря плотной упаковке. Она как бы намотана на специальные белки, которые называются гистоновыми белками. Комплекс белков и ДНК также называется хроматином. Другими словами, хроматин – это генетический материал, который виден в световой микроскоп.

В ядре выделяют ядерную оболочку (кариолемму), хроматин, ядрышко, ядерный сок (кариоплазму).

Наследственная информация дополнительно защищена мощной оболочкой. Оболочка ядра клетки состоит из двух слоёв – внутренней мембраны и внешней мембраны. В ядерной оболочке есть поры, через которые ядро обменивается с цитоплазмой различными молекулами. Чем активнее работает клетка, тем интенсивнее идёт обмен. А значит ядерных пор всё больше, они даже могут занимать треть площади оболочки.

Если рассматривать клетки в световой микроскоп, то у активных клеток ясно видно светлое пятно в ядре. Это ядрышко – участки хромосом, в которых синтезируется рибосомальная РНК (рибонуклеиновая кислота, рРНК).рРНК– это основная молекула рибосом. Рибосомы – это органеллы, которые синтезируют белок.

Митохондрии и энергия

В строении митохондрии есть общие с клеткой черты, например, свои ДНК и рибосомы. Дело в том, что когда-то митохондрия была самостоятельным организмом, бактерией, поселившейся в клетке. Со временем она стала незаменимой энергетической станцией для клетки.

Стенка митохондрии состоит из внешней и внутренней мембран. Внутренняя мембрана образует складки – кристы. На внутренней мембране митохондрий происходит сложный процесс запасания энергии в виде фосфатных связей молекулы аденозинтрифосфорной кислоты (АТФ). Молекулы АТФ – это маленькие батарейки. Если для какого-то действия нужна энергия, происходит разрыв связей между остатками фосфорной кислоты и выделяется энергия.

Цитоплазма и цитоскелет

Цитоплазма – это жидкая среда, которая заполняет собой клетку. В ней находятся органеллы, необходимые химические вещества, протекают биохимические реакции.

Цитоскелет клетки состоит из двух основных структур – белковых микротрубочек и белковых нитей. Само название «цитоскелет» подсказывает, что это опорный каркас клетки, но на самом деле этим его значение не исчерпывается.

Микротрубочка

Микротрубочки перемещают вещества по отросткам нервных клеток (нейронов)

Из микротрубочек состоит клеточный центр, который участвует в делении клетки

На некоторых клетках есть выросты цитоплазмы с каркасом из микротрубочек. Это реснички и жгутики. В человеческом организме жгутик есть только у сперматозоида. Реснички выстилают дыхательные пути. Когда реснички движутся, они выталкивают слизь с налипшими микробами и частицами пыли. Таким образом дыхательная система освобождается от возбудителей инфекционных заболеваний и вредных веществ.

Реснички на клетках, выстилающих полость носа с прилипшими частицами. Изображение получено с помощью электронного микроскопа

Микрофиламенты – это тонкие белковые нити. Они участвуют в эндоцитозе и экзоцитозе, перемещении органелл и самой клетки. Также они образуют соединения между клетками.

Есть клетки, у которых выросты цитоплазмы укреплены микрофиламентами. Такие выросты увеличивают площадь поверхности клетки и называются микроворсинками

Например, это важно для клеток тонкой кишки, где переваривается и всасывается огромное количество питательных веществ

Промежуточные филаменты – это прочные канаты, сплетённые из белковых молекул. Из них построен трёхмерный каркас для клетки. Также они образуют соединения между клетками, так из клеток получается своеобразное полотно – ткань.

Если клетка повреждается, то сеть промежуточных филаментов окружает ядро и связывает повреждённые органеллы. После этого повреждённые структуры будут уничтожены. По мере восстановления клетки сеть промежуточных филаментов расправляется и снова занимает всю цитоплазму.

Основные функции цитоскелета:

Создаёт каркас для клетки, ведь клетка похожа на полость с жидкостью или гелем;
помогает клетке двигаться, что особенно важно для иммунной системы;
перемещает вещества внутри клетки;
транспортирует вещества в клетку и через неё, например, способом эндоцитоза и экзоцитоза;
образует соединения между клетками, благодаря этому клетки составляют целые пласты – основу структуры тканей.

Стадии энергетического обмена

Несмотря на сложность реакций обмена энергии, он разделяется на три фазы:

  1. подготовительная,
  2. анаэробная (без кислорода),
  3. аэробная (кислород).

На подготовительном этапе происходит разложение молекул гликанов, липидов, белков, нуклеиновых кислот на более простые, к примеру, на глюкозу, глицерин и жирные кислоты, аминокислоты, нуклеотиды. Эта фаза может осуществляться непосредственно в клетках или в кишечнике, откуда эти вещества переносятся кровотоком.

В анаэробной фазе энергетического катаболизма в дальнейшем происходит расщепление мономеров органических соединений до более простых промежуточных соединений, к примеру, пировиноградной кислоты или пирувата. Он не нуждается в присутствии кислорода, и для организмов, живущих в болотном иле, это единственный способ получить энергию. Анаэробная фаза энергетического обмена проходит в цитоплазме.

Некоторые вещества подвергаются бескислородному расщеплению, при этом глюкоза, чаще всего, остается основным субстратом реакций. Процесс его свободного от кислорода распада принято называть гликолизом. Вследствие гликолиза, молекула глюкозы теряет четыре атома водорода, то есть она окисляется, и образуются две молекулы пировиноградной кислоты, две молекулы АТФ и две молекулы переносчика водорода, восстановленного НАДH + H +:

С6Н12О6+2Н3РО4+2АДФ+2НАД3Н4О3+2АТФ+2НАДН+Н++2Н2О.

Образование АТФ из АДФ осуществляется за счет прямого переноса фосфат-аниона из предварительно фосфорилированного сахара и называется субстратным фосфорилированием. 

Аэробная фаза энергетического катаболизма может происходить только в присутствии кислорода, тогда как промежуточные продукты, образующиеся при бескислородном разложении, окисляются до конечных продуктов (углекислого газа и воды), и большая часть энергии, хранящейся в химических связях органических соединений, высвобождается. В молекулу АТФ входит 36 макроэргических связей. Эта стадия имеет такое название, как тканевое дыхание. Когда кислород отсутствует, происходит преобразование промежуточных продуктов обмена веществ в определённые органические вещества,  данный процесс принято называть ферментацией или брожением.

Катаболизм (энергетический обмен)

Катаболизм (или энергетический обмен, диссимиляция) — это совокупность ферментативных реакций расщепления сложных органических соединений (в том числе пищевых веществ) на более простые вещества, сопровождающихся выделением энергии.

■ При этом часть энергии рассеивается в виде тепла, а часть аккумулируется в макроэргических связях АТФ и используется для обеспечения процессов жизнедеятельности клетки. Основное вещество, используемое клетками для получения энергии, -глюкоза.

❖ Этапы (стадии) катаболизма:
■ подготовительный,
■ бескислородный,
■ кислородный (отсутствует у анаэробных организмов).

❖Подготовительный этап (или пищеварение): биополимеры расщепляются до мономеров, белки — до аминокислот, жиры -до глицерина и жирных кислот, углеводы — до глюкозы, нуклеиновые кислоты — до нуклеотидов. Протекает в цитоплазме клеток и пищеварительном тракте животных и человека. Сопровождается наибольшим выделением энергии в виде тепла. Бескислородный и (у аэробных организмов) кислородный этапы катаболизма составляют процесс клеточного дыхания.

Обмен веществ и превращение энергии в организме человека

В организме человека постоянно и непрерывно протекают обменные процессы. Водный, солевой, жировой, углеводный и белковый обмен происходят постоянно. За счет этих процессов организм получает энергию для жизнедеятельности.

Обмен веществ в организме называется метаболизмом. Это обязательная часть жизни и развития человека. Обеспечивает совокупность химических  и ферментативных реакций в организме.

Запасы энергии в ходе активности расходуются. С пищей человек получает новую энергию. Соотношение поступающей энергии в организм и расходованной, называется энергетическим балансом.

Белковый обмен

Процесс направлен на использование белков, поступающих в организм с пищей. Сами белки организму не нужны. Большую пользу приносят аминокислоты. Белки распадаются на аминокислоты, часть всасывается в кровь и разносится по органам и тканям. Другая часть идет на получение энергии и строительство собственных белков.

Содержание аминокислот регулирует печень, полученные излишки она расщепляет до аммиака. Он идет на синтез мочевины, которая выводится почками и частично кожей. Остаток аминокислот организм перерабатывает в глюкозу, а затем в гликоген. В клетках белки полностью окисляются до воды, углекислого газа, мочевины и мочевой кислоты.

Углеводный обмен

Процесс описывает использование и преобразование углеводов организмом. Углеводы являются основным источником энергии для организма. В суточном рационе они должны составлять треть всего объема пищи.   При расщеплении 1 грамма глюкозы выделяется 17,6 кДж.

После поступления в организм углеводов, они расщепляются до глюкозы. Часть накапливается в печени и преобразуется в гликоген. Он является основным энергетическим источником для сокращения мышечной ткани.

Другая часть преобразуется в жиры. Основная часть глюкозы полностью расщепляется до воды и углекислого газа. 

Уровень глюкозы в крови регулируется гормональной системой, а именно инсулином. При пониженном его содержании, уровень глюкозы в крови находится в повышенном состоянии, что приводит к развитию сахарного диабета. Инсулин тормозит распад гликогена в печени, тем самым увеличивая его содержание. 

Также в организме есть гормон глюкагон. Он отвечает за расщепление гликогена, преобразует его в глюкозу, после чего уровень повышается.

Липидный обмен

Липидный обмен – это процесс преобразования и использования жиров, поступающих в организм с пищей. При расщеплении 1 г выделяется 38,9 кДж энергии.

Жиры содержат незаменимые жирные кислоты. Они всасываются в лимфу через стенки тонкого кишечника. С током крови они распределяются по организму и клеткам. Они являются строительным материалом для клеточных элементов, участвуют в синтезе и образовании гормонов.

При избыточном употреблении жиров  образуются подкожные накопления в виде сальников. Они могут откладываться на тканях органов и на стенках сосудов. Конечным продуктом распада жиров являются вода и углекислый газ.

Водно-солевой обмен

Организм человека на 70% состоит из воды. 30% из них содержится в крови, лимфе и плазме. Вода выполняет множество полезных функций:

  • транспортную;
  • выделительную;
  • теплорегуляционную;
  • среда для протекания химических процессов;
  • определяет физические свойства клеток.

Суточная потребность в жидкости у человека составляет 2-2,5 л. Водный обмен предполагает равновесие между потребляемой и выводимой жидкостью. Вода поступает в организм, всасывается через стенки кишечника, попадает в кровь и распространяется по органам и тканям. Выводится остаток воды с мочой и потом.

Солевой обмен необходим для совершения химических процессов в организме человека. Ежедневно необходимо поступление солей натрия, калия, кальция, фосфора и железа. Они не только участвуют в обменах, но и являются питанием для некоторых органов.

Метаболизм

Всякая живая клеточная структура постоянно осуществляет различные реакции, которые обеспечивают все основные процессы, необходимые для нормального существования. Так обеспечивается постоянство условий внутренней среды биологической системы или гомеостаз. При нарушении этих условий происходит сбой в работе всей системы, что способно привести к гибели не только отдельной клетки, но и всего организма. Соответственно, все процессы ориентированы на поддержание именно гомеостаза.

С целью реализации трудоемких биохимических реакций требуются различные соединения, а также энергия, получаемые организмом при метаболизме.

Получается, что ассимиляция и диссимиляция – это взаимозависимые процессы, протекающие синхронно.

Любой организм, вследствие питания, получает извне различные вещества и микроэлементы, используемые в процессе ассимиляции.

Ассимиляция – это процесс, состоящий в формировании соединений, а также составных частей клетки. Данные реакции иначе именуются анаболизм или пластический обмен. Примером ассимиляции может быть образование белковых молекул.

Любые реакции синтеза проходят с расходом энергии. Источником ее выступают ранее образованные соединения, находящиеся в клетке. Они подвергаются распаду вследствие протекания совокупности процессов диссимиляции.

Частично освобождающаяся энергия применяется при синтезе различных соединений, часть рассеивается с теплом или запасается.

Соответственно, диссимиляция – это процесс,заключающийся в разложении  веществ с освобождением энергии.

Процесс диссимиляции в организме именуется еще катаболизм или энергетический обмен.

Ассимиляция и диссимиляция не могут существовать по отдельности. Нарушение баланса этих процессов приведет к развитию заболеваний или гибели организма. К примеру, это может выразиться в истощении или ожирении.

Метаболизм в клеточных структурах протекает при средней температуре, нормальном давлении и нейтральной среде. Из курса химии нам известно, что только повышение данных показателей приведет к ускорению реакции. При таких же условиях реакции должны протекать очень медленно. Однако, в биологических системах есть помощники метаболизма – ферменты.

Роль ферментов в метаболизме огромна. Данные структуры ускоряют реакцию без изменения ее общего результата. Причем абсолютно все процессы в организме протекают при участии ферментов. К примеру, под их действием происходит разложение пищи на составные компоненты.

Исходя из значения ферментов в метаболизме можно сказать, что нарушение их образования и активности приведет к различным заболеваниям.