Свойства жидкостей. поверхностное натяжение

Введение

В наш век высоких технологий все большее значение в жизни людей имеют естественные науки. Люди 21 века производят супер производительные компьютеры,смартфоны,все глубже и глубже изучают окружающий нас мир. Я думаю, что люди готовятся к новой научно технической революции, которая изменит наше будущее коренным образом. Но когда произойдут эти изменения никто не знает. Каждый человек своим трудом может приблизить этот день.

Эта научно-исследовательская работа – мой маленький вклад в развитие физики.

Данная научно-исследовательская работа посвящена актуальной на данный момент теме «Капиллярные явления». В жизни мы часто имеем дело с телами, пронизанными множеством мелких каналов (бумага, пряжа, кожа, различные строительные материалы, почва, дерево). Приходя в соприкосновение с водой или другими жидкостями, такие тела очень часто впитывают их в себя

В данном проекте показана важность капилляров в жизни живых и неживых организмов

Цель исследовательской работы: обосновать с точки зрения физики причину движения жидкости по капиллярам, выявить особенности капиллярных явлений.

Объект исследования: свойство жидкостей, всасываясь, подниматься или опускаться по капиллярам.

Предмет исследования: капиллярные явления в живой и неживой природе.

  1. Изучить теоретический материал о свойствах жидкости.
  2. Ознакомиться с материалом о капиллярных явлениях.
  3. Провести серию экспериментов с целью выяснения причины поднятия жидкости в капиллярах.
  4. Обобщить изученный в ходе работы материал и сформулировать вывод.

Прежде чем перейти к изучению капиллярных явлений, надо ознакомиться со свойствами жидкости, которые играют немалую роль в капиллярных явлениях.

Капиллярные явления в природе

Описанный выше процесс чрезвычайно важен для поддержания жизнедеятельности растений. Почва довольно рыхлая, между ее частицами существуют промежутки, которые представляют собой капиллярную сеть. По этим каналам поднимается вода, питая корневую систему растений влагой и всеми необходимыми веществами.

По этим же капиллярам жидкость активно испаряется, поэтому необходимо производить вспахивание земли, которое разрушит каналы и удержит питательные вещества. И наоборот, прижатая земля быстрее испарит влагу

Этим обусловлена важность перепашки земли для удержания подпочвенной жидкости

В растениях капиллярная система обеспечивает подъем влаги от мелких корешков до самых верхних частей, а через листья она испаряется во внешнюю среду.

Транспирация

Массовый поток жидкой воды от корней к листьям частично обусловлен капиллярным действием , но в первую очередь обусловлен разницей водного потенциала . Если водный потенциал в окружающем воздухе ниже, чем водный потенциал в воздушном пространстве листа устьичной поры, водяной пар будет перемещаться вниз по градиенту и перемещаться из воздушного пространства листа в атмосферу. Это движение снижает водный потенциал в воздушном пространстве листа и вызывает испарение жидкой воды со стенок клеток мезофилла. Это испарение увеличивает натяжение водяных менисков в стенках ячеек и уменьшает их радиус и, следовательно, натяжение, оказываемое на воду в ячейках. Из-за когезионных свойств воды, напряжение проходит через клетки листа к ксилеме листа и стебля, где создается кратковременное отрицательное давление, когда вода вытягивается вверх по ксилеме от корней. Поскольку испарение происходит на поверхности листа, свойства адгезии и сцепления работают в тандеме, вытягивая молекулы воды из корней через ткань ксилемы и из растения через устьица. У более высоких растений и деревьев силу тяжести можно преодолеть только за счет снижения гидростатического (водяного) давления в верхних частях растений из-за диффузии воды из устьиц в атмосферу . Вода абсорбируется корнями за счет осмоса , и любые растворенные минеральные вещества перемещаются вместе с ней через ксилему .

Высота мениска

Высота воды в капилляре в зависимости от диаметра капилляра

Высота час столба жидкости определяется выражением Закон Журина

час=2γпотому что⁡θρграммр,{ displaystyle h = {{2 gamma cos { theta}} over { rho gr}},}

куда γ{ Displaystyle scriptstyle gamma} жидкость-воздух поверхностное натяжение (сила на единицу длины), θ это угол контакта, ρ это плотность жидкости (масса / объем), грамм местный ускорение силы тяжести (длина / квадрат времени), и р это радиус трубки. Таким образом, чем тоньше пространство, в котором может перемещаться вода, тем выше она поднимается.

Для стеклянной трубки, наполненной водой, в воздухе в стандартных лабораторных условиях, γ = 0,0728 Н / м в 20° C, ρ = 1000 кг / м3, и грамм = 9,81 м / с2. Для этих значений высота водяного столба равна

час≈1.48×10−5 м2р.{ displaystyle h приблизительно {{1,48 times 10 ^ {- 5} { mbox {m}} ^ {2}} over r}.}

Таким образом, для стеклянной трубки радиусом 2 м (6,6 фута) в лабораторных условиях, указанных выше, вода поднимется на незаметные 0,007 мм (0,00028 дюйма). Однако для трубы с радиусом 2 см (0,79 дюйма) вода поднимется на 0,7 мм (0,028 дюйма), а для трубы с радиусом 0,2 мм (0,0079 дюйма) вода поднимется на 70 мм (2,8 дюйма).

Поверхностное натяжение

Сам термин «поверхностное натяжение» подразумевает, что вещество у поверхности находится в «натянутом», то есть напряжённом состоянии, которое объясняется действием силы, называемой внутренним давлением. Она стягивает молекулы внутрь жидкости в направлении, перпендикулярном её поверхности. Так, молекулы, находящиеся во внутренних слоях вещества, испытывают в среднем одинаковое по всем направлениям притяжение со стороны окружающих молекул; молекулы же поверхностного слоя подвергаются неодинаковому притяжению со стороны внутренних слоёв веществ и со стороны, граничащей с поверхностным слоем среды. Например, на поверхности раздела жидкость – воздух молекулы жидкости, находящиеся в поверхностном слое, сильнее притягиваются со стороны соседних молекул внутренних слоёв жидкости, чем со стороны молекул воздуха. Это и является причиной различия свойств поверхностного слоя жидкости от свойств её внутренних объёмов.

Внутреннее давление обуславливает втягивание молекул, расположенных на поверхности жидкости, внутрь и тем самым стремится уменьшить поверхность до минимальной при данных условиях. Сила, действующая на единицу длины границы раздела, обуславливающая сокращение поверхности жидкости, называется силой поверхностного натяжения или просто поверхностным натяжением σ
.

Поверхностное натяжение различных жидкостей неодинаково, оно зависит от их мольного объёма, полярности молекул, способности молекул к образованию водородной связи между собой и др.

При увеличении температуры поверхностное натяжение уменьшается по линейному закону. На поверхностное натяжение жидкости оказывают влияние и находящиеся в ней примеси. Вещества, ослабляющие поверхностное натяжение, называют поверхностно-активными (ПАВ). По отношению к воде ПАВ являются нефтепродукты, спирты, эфир, мыло и др. жидкие и твёрдые вещества. Некоторые вещества увеличивают поверхностное натяжение. Примеси солей и сахара, например.

Объяснение этому даёт МКТ. Если силы притяжения между молекулами самой жидкости больше сил притяжения между молекулами ПАВ и жидкости, то молекулы жидкости уходят внутрь из поверхностного слоя, а молекулы ПАВ вытесняются на поверхность. Очевидно, что молекулы соли и сахара будут втянуты в жидкость, а молекулы воды вытеснены на поверхность. Таким образом, поверхностное натяжение – основное понятие физики и химии поверхностных явлений – представляет собой одну из наиболее важных характеристик и в практическом отношении. Следует отметить, что всякое серьёзное научное исследование в области физики гетерогенных систем требует измерения поверхностного натяжения. История экспериментальных методов определения поверхностного натяжения, насчитывающая более двух столетий, прошла путь от простых и грубых способов до прецизионных методик, позволяющих находить поверхностное натяжение с точностью до сотых долей процента. Интерес к этой проблеме особенно возрос в последние десятилетия в связи с выходом человека в космос, развитием промышленного строения, где капиллярные силы в различных устройствах часто играют определяющую роль.

Один из таких методов определения поверхностного натяжения основан на поднятии смачивающей жидкости между двумя стеклянными пластинками. Их следует опустить в сосуд с водой и постепенно сближать параллельно друг другу. Вода начнёт подниматься между пластинками – её будет втягивать сила поверхностного натяжения, о которой сказано выше. Легко рассчитать коэффициент поверхностного натяжения σ
можно по высоте подъёма воды у и зазору между пластинками d
.

Сила поверхностного натяжения F
= 2σ
L
, где L
– длина пластинки (двойка появилась из-за того, что вода соприкасается с обеими пластинками). Эта сила удерживает слой воды массы m
= ρ
Ldу
, где ρ
– плотность воды. Таким образом, 2σ
L
= ρ
Ldуg
. Отсюда можно найти коэффициент поверхностного натяжения σ
= 1/2(ρ
gdу
). (1)Но интереснее сделать так: с одного конца сжать пластинки вместе, а с другого оставить небольшой зазор.

Вода поднимется и образует между пластинками удивительно правильную поверхность. Сечение этой поверхности вертикальной плоскостью – гипербола. Для доказательства достаточно в формулу (1) вместо d подставить новое выражение для зазора в данном месте. Из подобия соответствующих треугольников (см. рис. 2) d
= D
(x
/L
). Здесь D
– зазор на конце, L
– по-прежнему длина пластинки, а x
– расстояние от места соприкосновения пластинок до места, где определяется зазор и высота уровня. Таким образом, σ
= 1/2(ρ

)D
(x
/L
), или у
= 2σ
L/ρ
gD(1/х
). (2)Уравнение (2) действительно является уравнением гиперболы.

Явления и физика [ править ]

Эксперимент с капиллярным потоком для исследования капиллярных потоков и явлений на борту Международной космической станции

Капиллярное проникновение в пористую среду имеет общий динамический механизм с потоком в полых трубках, поскольку обоим процессам противодействуют силы вязкости. Следовательно, обычным прибором, используемым для демонстрации этого явления, является капиллярная трубка . Когда нижний конец стеклянной трубки помещается в жидкость, например воду, образуется вогнутый мениск . Между жидкостью и твердой внутренней стенкой происходит адгезия, тянущая за собой столб жидкости до тех пор, пока масса жидкости не станет достаточной для гравитационных сил.чтобы преодолеть эти межмолекулярные силы. Длина контакта (по краю) между верхом столба жидкости и трубкой пропорциональна радиусу трубки, а вес столба жидкости пропорционален квадрату радиуса трубки. Таким образом, узкая трубка будет тянуть столб жидкости дальше, чем более широкая, при условии, что внутренние молекулы воды в достаточной степени сцепляются с внешними.

Узкие трубки

Капилляр – это очень узкая трубка, в которой жидкость ведет себя особым образом. Примеров таких сосудов много в природе – капилляры кровеносной системы, пористых тел, почвы, растений и т. д.

Капиллярным явлением называется подъем или опускание жидкостей по узким трубкам. Такие процессы наблюдаются в естественных каналах человека, растений и других тел, а также в специальных узких сосудах из стекла. На картинке видно, что в сообщающихся трубках разной толщины установился разный уровень воды. Отмечено, что чем тоньше сосуд, тем выше уровень воды.

Эти явления лежат в основе впитывающих свойств полотенца, питания растений, движения чернил по стержню и многих других процессов.

Явления и физика

Эксперимент с капиллярным потоком для исследования капиллярных потоков и явлений на борту Международная космическая станция

Капиллярное проникновение в пористую среду имеет общий динамический механизм с потоком в полых трубках, поскольку обоим процессам препятствуют силы вязкости. Следовательно, обычным аппаратом, используемым для демонстрации этого явления, является капиллярная трубка. Когда нижний конец стеклянной трубки помещается в жидкость, например воду, вогнутый мениск формы. Адгезия происходит между жидкостью и твердой внутренней стенкой, вытягивая столб жидкости, пока не будет достаточной массы жидкости для гравитационные силы чтобы преодолеть эти межмолекулярные силы. Длина контакта (по краю) между верхом столба жидкости и трубкой пропорциональна радиусу трубки, а вес столба жидкости пропорционален квадрату радиуса трубки. Таким образом, узкая трубка будет втягивать столб жидкости дальше, чем более широкая, при условии, что внутренние молекулы воды в достаточной степени сцепляются с внешними.

Практическая часть

Возьмем стеклянную трубочку с очень маленьким внутренним диаметром (d

Поднятие жидкости вследствие действия сил поверхностного натяжения воды можно наблюдать в простом опыте. Возьмем чистую тряпочку и опустим один ее конец в стакан с водой, а другой свесим наружу через край стакана. Вода начнет подниматься по порам ткани, аналогичным капиллярным трубкам, и пропитает всю тряпочку. Избыток воды будет капать с висящего конца (см. фото 2).

Если для опыта брать ткань светлого цвета, то на фото очень плохо видно как вода распространяется по ткани. Также следует иметь в виду, что не для всякой ткани избыток воды будет капать со свисающего конца. Я этот опыт делал дважды. Первый раз использовали светлую ткань (х/б трикотаж); вода очень хорошо стекала каплями с висящего конца. Второй раз использовали темную ткань (трикотаж из смешанных волокон – х/б и синтетика); хорошо было видно как вода распространяется по ткани, но капли со свисающего конца не капали.

Поднятие жидкости по капиллярам происходит тогда, когда силы притяжения молекул жидкости друг к другу меньше сил их притяжения к молекулам твердого тела. В этом случае говорят, что жидкость смачивает твердое тело.

Если взять не очень тонкую трубочку, набрать в нее воды и пальцем закрыть нижний конец трубки, можно увидеть, что уровень воды в трубке вогнут (рис. 9).

Это результат того, что молекулы воды сильнее притягиваются к молекулам стенок сосуда, чем друг к другу.

Не все жидкости и не во всяких трубках «цепляются» за стенки. Бывает и так, что жидкость в капилляре опускается ниже уровня в широком сосуде, при этом ее поверхность — выпуклая. Про такую жидкость говорят, что она не смачивает поверхность твердого тела. Притяжение молекул жидкости друг к другу сильнее, чем к молекулам стенок сосуда. Так ведет себя, например, ртуть в стеклянном капилляре. (Рис.10)

Примеры [ править ]

В искусственной среде капиллярное проникновение, ограниченное испарением, является причиной явления повышения влажности в бетоне и кирпичной кладке , в то время как в промышленности и диагностической медицине это явление все чаще используется в области микрофлюидики на основе бумаги .

В физиологии капиллярное действие необходимо для оттока непрерывно производимой слезной жидкости из глаза. Два канальца крошечного диаметра присутствуют во внутреннем углу века , также называемом слезными протоками ; их отверстия можно увидеть невооруженным глазом внутри слезных мешочков, когда веки вывернуты.

Растекание — это поглощение жидкости материалом наподобие фитиля свечи.
Бумажные полотенца впитывают жидкость за счет капиллярного действия, позволяя жидкости переноситься с поверхности на полотенце. Маленькие поры губки действуют как маленькие капилляры, заставляя ее впитывать большое количество жидкости. Говорят, что некоторые текстильные ткани обладают капиллярным действием, чтобы «отводить» пот от кожи. Их часто называют за капиллярных свойств фитилей свечей и ламп .

Капиллярное действие наблюдается в тонкослойной хроматографии , при которой растворитель перемещается вертикально вверх по пластине за счет капиллярного действия. В этом случае поры представляют собой промежутки между очень маленькими частицами.

Капиллярная действие рисует чернила к кончикам перьевой ручки наконечников из резервуара или картриджа внутри пера.

В некоторых парах материалов, таких как ртуть и стекло, межмолекулярные силы внутри жидкости превышают силы между твердым телом и жидкостью, поэтому образуется выпуклый мениск, и капиллярное действие работает в обратном направлении.

В гидрологии капиллярное действие описывает притяжение молекул воды к частицам почвы. Капиллярное действие отвечает за перемещение грунтовых вод из влажных участков почвы в сухие. Различия в почвенном потенциале ( ) приводят к капиллярному действию в почве.
Ψм{\ displaystyle \ Psi _ {m}}

Практическое применение капиллярного действия — сифон капиллярного действия. Вместо использования полой трубки (как в большинстве сифонов) это устройство состоит из отрезка шнура, сделанного из волокнистого материала (хорошо подойдет хлопковый шнур или веревка). После пропитывания шнура водой один (утяжеленный) конец помещают в емкость с водой, а другой конец — в приемную емкость. Резервуар должен быть выше принимающей емкости. Из-за капиллярного действия и силы тяжести вода будет медленно переходить из резервуара в приемный резервуар. Это простое устройство можно использовать для полива комнатных растений, когда никого нет дома.

Поверхностное натяжение и смачивание

В основе вопроса о поведении жидкости в сосудах лежат такие физические процессы, как поверхностное натяжение и смачивание. Капиллярные явления, обусловленные ими, изучаются в комплексе.

Под действием силы поверхностного натяжения смачивающая жидкость в капиллярах находится выше уровня, на котором она должна находиться согласно закону сообщающихся сосудов. И наоборот, несмачивающая субстанция располагается ниже этого уровня.

Так, вода в стеклянной трубке (смачивающая жидкость) поднимается на тем большую высоту, чем тоньше сосуд. Напротив, ртуть в стеклянной пробирке (несмачивающая жидкость) опускается тем ниже, чем тоньше эта емкость. Кроме того, как указано на картинке, смачивающая жидкость образует вогнутую форму мениска, а несмачивающая – выпуклую.

Лапласовское давление

Как уже отмечалось, жидкость в узких трубках ведет себя так, что создается впечатление нарушения закона сообщающихся сосудов. Этот факт всегда сопровождает капиллярные явления. Физика объясняет это с помощью лапласовского давления, которое при смачивающей жидкости направлено вверх. Опуская очень узкую трубку в воду, наблюдаем, как жидкость втягивается на определенный уровень h. По закону сообщающихся сосудов, она должна была уравновеситься с внешним уровнем воды.

Это несоответствие объясняется направлением лапласовского давления pл:

pл=2σ/R,

В данном случае оно направлено вверх. Вода втягивается в трубку до уровня, где приходит уравновешивание с гидростатическим давлением pг столба воды:

pг=pqh,

а если pл=pг, то можно приравнять и две части уравнения:

2σ/R= pqh.

Теперь высоту h легко вывести в виде формулы:

h=2σ/pqR.

Когда смачивание полное, тогда мениск, который образует вогнутая поверхность воды, имеет форму полусферы, где Ɵ=0. В таком случае радиус сферы R будет равен внутреннему радиусу капилляра r. Отсюда получаем:

h=2σ/pqr.

А в случае неполного смачивания, когда Ɵ≠0, радиус сферы можно вычислить по формуле:

R=r/cosƟ.

Тогда искомая высота, имеющая поправку на угол, будет равна:

h=(2σ/pqr)cosƟ.

Из представленных уравнений видно, что высота h обратно пропорциональна внутреннему радиусу трубки r. Наибольшей высоты вода достигает в сосудах, имеющих диаметр человеческого волоса, которые и называются капиллярами. Как известно, смачивающая жидкость втягивается вверх, а несмачивающая – выталкивается вниз.

Можно провести эксперимент, взяв сообщающиеся сосуды, где один из них широкий, а другой – очень узкий. Налив туда воду, можно отметить разный уровень жидкости, причем в варианте со смачивающей субстанцией уровень в узкой трубке выше, а с несмачивающей – ниже.

Примеры

В искусственной среде капиллярное проникновение, ограниченное испарением, является причиной явления повышения влажности в бетоне и кирпичной кладке , в то время как в промышленности и диагностической медицине это явление все чаще используется в области микрофлюидики на бумажной основе .

В физиологии капиллярное действие необходимо для оттока непрерывно производимой слезной жидкости из глаза. Два канальца крошечного диаметра присутствуют во внутреннем углу века , также называемом слезными протоками ; их отверстия можно увидеть невооруженным глазом внутри слезных мешочков, когда веки вывернуты.

Растекание — это поглощение жидкости материалом наподобие фитиля свечи.
Бумажные полотенца впитывают жидкость за счет капиллярного действия, позволяя жидкости переноситься с поверхности на полотенце. Маленькие поры губки действуют как маленькие капилляры, заставляя ее впитывать большое количество жидкости. Говорят, что некоторые текстильные ткани обладают капиллярным действием, чтобы «отводить» пот от кожи. Их часто называют за капиллярных свойств фитилей свечей и ламп .

Капиллярное действие наблюдается в тонкослойной хроматографии , при которой растворитель перемещается вертикально вверх по пластине за счет капиллярного действия. В этом случае поры представляют собой промежутки между очень маленькими частицами.

Капиллярная действие рисует чернила к кончикам перьевой ручки наконечников из резервуара или картриджа внутри пера.

В некоторых парах материалов, таких как ртуть и стекло, межмолекулярные силы внутри жидкости превышают силы между твердым телом и жидкостью, поэтому образуется выпуклый мениск, и капиллярное действие работает в обратном направлении.

В гидрологии капиллярное действие описывает притяжение молекул воды к частицам почвы. Капиллярное действие отвечает за перемещение грунтовых вод из влажных участков почвы в сухие. Различия в почвенном потенциале ( ) приводят к капиллярному действию в почве.
Ψм{\ displaystyle \ Psi _ {m}}

Практическое применение капиллярного действия — сифон капиллярного действия. Вместо использования полой трубки (как в большинстве сифонов) это устройство состоит из отрезка шнура, сделанного из волокнистого материала (хорошо подойдет хлопковый шнур или веревка). После пропитывания шнура водой один (утяжеленный) конец помещают в емкость с водой, а другой конец — в приемную емкость. Емкость должна быть выше принимающей емкости. Из-за капиллярного действия и силы тяжести вода будет медленно переходить из резервуара в приемный резервуар. Это простое устройство можно использовать для полива комнатных растений, когда никого нет дома.

У растений и животных

Капиллярное действие наблюдается у многих растений. Вода поднимается высоко в деревья за счет ветвления; испарение на листьях, создающее разгерметизацию; вероятно, за счет осмотического давления у корней; и, возможно, в других местах внутри растения, особенно при сборе влаги корнями воздуха .

Капиллярное действие по поглощению воды было описано у некоторых мелких животных, таких как Ligia exotica и Moloch horridus .

Расчет высоты подъема столба воды

Момент остановки подъема воды в узкой трубке наступает, когда сила тяжести Ртяж субстанции уравновесит силу поверхностного натяжения F. Этот момент определяет высоту подъема жидкости. Капиллярные явления обусловлены двумя разнонаправленными силами:

  • сила тяжести Ртяж заставляет жидкость опускаться вниз;
  • сила поверхностного натяжения F двигает воду вверх.

Сила поверхностного натяжения, действующая по окружности, где жидкость соприкасается со стенками трубки, равна:

F = σ2πr,

где r – радиус трубки.

Сила тяжести, действующая на жидкость в трубке равна:

Ртяж = ρπr2hg,

где ρ – плотность жидкости; h – высота столба жидкости в трубке;

Итак, субстанция прекратит подниматься при условии, что Ртяж = F, а это значит, что

ρπr2hg = σ2πr,

отсюда высота жидкости в трубке равна:

h=2σ/pqr.

Точно так же для несмачивающей жидкости:

h – это высота опускания субстанции в трубке. Как видно из формул, высота, на которую поднимется вода в узком сосуде (опустится) обратно пропорционально радиусу емкости и плотности жидкости. Это касается смачивающей жидкости и несмачивающей. При других условиях нужно делать поправку по форме мениска, что будет представлено в следующей главе.

Сила поверхностного натяжения

Поверхность капли имеет шарообразную форму и причина этому закон, действующий на жидкости, – поверхностное натяжение.

Капиллярные явления связаны с тем, что вогнутая сторона жидкости в трубке стремится выпрямиться до плоского состояния благодаря силам поверхностного натяжения. Это сопровождается тем, что наружные частицы увлекают за собой вверх тела, находящиеся под ними, и субстанция поднимается вверх по трубке. Однако жидкость в капилляре не может принимать плоскую форму поверхности, и этот процесс подъема продолжается до определенного момента равновесия. Чтобы рассчитать высоту, на которую поднимется (опустится) столб воды, нужно воспользоваться формулами, которые будут представлены ниже.