Строение вселенной

Основные теории происхождения Вселенной

Большой взрыв не единственное современное представление о происхождении и эволюции Вселенной. Научный мир знает множество теорий возникновения мира, основными из которых являются:

  • Теория струн. Ее основное утверждение
    заключается в том, что все существующее состоит из мельчающих энергетических
    нитей. Такие квантовые струны могут растягиваться, искривляться и располагаться
    в любых направлениях, что делает космическое пространство многомерным. И каждое
    из этих измерений имеет свою эволюционную стадийность.
  • Теория стационарной Вселенной. По этой
    версии, в расширяющемся пространстве космоса постоянно возникает новая материя,
    что делают всю систему стабильной. Идея была популярна в середине 20-го века,
    но после открытия и изучения реликтового излучения у нее практически не
    осталось сторонников.

Не исключено, что все
предположения о возникновении мироздания, признанные сейчас в научном мире, не
будут опровергнуты в будущем. И чем дальше и дольше человечество исследует
космические просторы, тем больше новых ответов и вопросов оно находит.

Что мы точно знаем о ней?

Мы абсолютно уверены в том, что Вселенная огромна, и с большой долей вероятности можем утверждать, что она неизмерима. Для измерения расстояний между космическими объектами используется совершенно «вселенская» единица – световой год. Это расстояние, которое луч света способен преодолеть за год.

Вещество, из которого состоит Вселенная, окружает нашу планету как минимум на расстоянии 93 миллиардов световых лет. Для сравнения, наша галактика занимает место, которое можно преодолеть за 100 тысяч световых лет.

Ученые разделяют космическое вещество на скопление атомов – понятную и изученную физическую материю, которую называют также барионным веществом. Однако большую часть Вселенной занимает неизученная темная энергия, свойства которой неизвестны ученым. Также немалую часть видимого пространства Вселенной занимает темная или скрытая масса, которую ученые называют невидимым веществом.

Скопление барионного вещества образует звезды, планеты и другие космические тела, которые, в свою очередь, образуют галактики. Последние находятся в движении и удаляются друг от друга. Ответить на вопрос о том, сколько галактик во Вселенной, с точностью невозможно.

Сложная структура Вселенной

Из чего состоит Вселенная

Известно, что светила концентрируются в скопления, которые в дальнейшем, объединяются в значительные собрания космических объектов – галактики. Но это не конечный этап эволюции. Далее следуют сверхскопления галактик, включающие тысячи объектов. Такая форма упорядочения материи во Вселенной, доступная для наблюдения и изучения, в космологии именуется крупномасштабной структурой. Гигантские скопления галактик не ограничены в движении силами гравитации. Они способны расширяться, подчиняясь закону Хаббла, описывающему основные механизмы увеличения границ Вселенной. Занимательный факт: Землю и самое дальнее от нас сверхскопление галактик разделяет 7 млрд. св. лет. Вес далекого исполина в квадриллион раз превосходит солнечный (его масса в тоннах выражается числом, имеющим вид двойки с сорока пятью нулями). Масштабными космическими конструкциями стали скопления галактик, сформированные в форме нитей. Их разделяют области, в которых отсутствует материя, – пустоты. В просторах космоса именно нити и пустоты образуют плоские конструкции, называемые стенами.

Определение в космологии и важные факты

Определением Вселенной в космологии будет область мира, за которой можно наблюдать. Именно в этом смысле синонимичным ей понятием является Метагалактика. За этим широким определением кроется множество секретов, ведь космические эксперименты начались очень давно, продолжаются до сих пор и нет никаких оснований предполагать, что завершатся в ближайшем будущем.

Среди них:

  • Химический состав. Космическое пространство на три четверти состоит из водорода, также в нём присутствует гелий с кислородом, углеродом и другими более редкими примесями.
  • Вселенная линейно расширяется, а все объекты, соответственно, удаляются друг от друга. Из-за этого у Метагалактики нет чётко обозначенного центра (как у надуваемого воздушного шара). Приблизительно 5 миллиардов лет назад этот процесс стал ускоряться, поэтому учёные строят различные гипотезы о том, что может произойти с ней в ближайшем будущем.
  • Метагалактику равномерно заполняет тепловое излучение, называемое реликтовым фоном. Однозначные причины его существования неизвестны, поскольку исследователи не нашли массовых источников, которые бы могли его вызвать. Однако есть предположение, что излучение было высвобождено в момент образования атомов водорода.
  • Пространственное распределение галактик Вселенной можно представить как ячеистую структуру. Однако из-за того, что в ней постоянно происходит движение, сеть постепенно растягивается.
  • Самые яркие в видимой области объекты (квазары) характеризуются многократным повторением спектра Лаймана. Изучение этого явление дало возможность смоделировать крупномасштабную структуру Вселенной.

Будущее Вселенной

Наше
мироздание началось с маленькой точки. Быстрое развитие и расширение границ
привело к образованию необъятных космических просторов. Но, будет ли
остановлено расширение? Возможен ли обратный вариант развития, то есть сжатия в
ту же исходную плотную точку?

В 1990-х
годах, специалисты пришли к выводу, что реальны два варианта будущего
Вселенной.

“Сжатие”
космических просторов возможно! При достижении максимальных размеров, она может
разрушиться. Плотность черной материи может достичь критических показателей,
из-за чего будет сжиматься.

Также,
существует предположение, что причиной разрушения мироздания могут стать черные
дыры. Все звездные скопления могут прекратить передачу энергии и
преобразоваться в черные дыры. Если температура космического пространства
приблизиться к нулю, возможно их испарение. В результате чего, все разрушиться
и наступит логичный конец.

Современное представление о наблюдаемой Вселенной

Наблюдаемой называют часть Вселенной, которая представляет собой прошлое относительно наблюдателя. Иначе говоря, это пространство, где материя смогла бы достичь расположения настоящей Земли.

У наблюдаемой Вселенной существует граница. Это, так называемый, космологический горизонт. Все, что на нём расположено имеет бесконечное красное смещение.

Эффект Доплера

Современные методики позволяют изучить часть такой Вселенной. Её назвали Метагалактикой.Теоретически за её пределами также находятся космические объекты.

Многие гипотезы построены на том, что наблюдаемая Вселенная является небольшой частью полной Вселенной.Сегодня наука занимается в основном изучение Метагалактики. Но учёные продолжают попытки выйти за её границы.

Наблюдение за удаленными объектами

Буущий телескоп James Webb

Число звезд, наполняющих космос, особенно трудно вообразить. Его диаметр, экспериментально определенный учеными, должен достигать 93 млрд. св. лет. А подсчитанное значение промежутка до самого дальнего объекта, замеченного современной техникой, составило около 14 млрд. св. лет. Такие масштабы и колоссальные дистанции прослеживаются по всем известным направлениям. Между нашей системой и самой удаленной галактикой насчитывается 13,2 млрд. св. лет. Существование сверхдальнего объекта определено только в инфракрасном диапазоне. Достигающее нас его излучение приносит сведения о галактике с огромным опозданием, поэтому мы наблюдаем ее такой, какой она была миллиарды лет назад.

Для изучения столь отдаленных объектов требуется уникальное оборудование – сверхмощные телескопы типа «Хаббл». Ресурсы этих приборов возрастают с каждым годом: так, телескоп «Джеймс Уэбб», который планируется запустить в 2018 году, сможет заглянуть в космические глубины намного дальше. За пределами доступной для наблюдения Вселенной предполагается наличие гипотетических внеметагалактических объектов. Считается, что их развитие не затронуто процессом Большого взрыва, они относятся к Мультивселенной.

Войды и галактические нити

Если представить, что можно взглянуть на строение Вселенной со стороны, видно, что она состоит из плотных тел и пустот. Плотные тела или галактические нити представляют собой скопление и группы галактик. Между ними расположены войды или пустоты. На самом деле они непустые, просто концентрация небесных тел в них намного меньше.

Размеры войдов могут составлять от 10 до 150 мегапарсек. Учёные считают, что они занимают половину всего пространства Вселенной.

Из чего состоят галактические нити

Галактические нити – это одна из частей Вселенной. Состоят из галактик, образующих «стены», скопления, группы:

  • Иногда галактики объединяются в группы до 100. Они связаны гравитацией, отделены от других групп в пространстве.
  • Скопление галактик – это объединение их в систему, связанную гравитацией. Могут быть правильными и неправильными. Обычно включают более 100 галактик.
  • Сверхскопление галактик – это самое крупное образование. Состоит из групп, скоплений и отдельных галактик. Представляют собой разветвлённую сеть волокон, между которыми расположены войды.

Масштабы Вселенной

Чтобы хотя бы немного приблизиться к ответу на вопрос, каковы размеры Вселенной, необходимо оценить масштабы отдельных ее частей. Для человека обогнуть земной шар задача сложная, но вполне выполнимая. А теперь представьте, что наша планета по сравнению с Сатурном, как монетка в сравнении с баскетбольным мячом. А по отношению к Солнцу Земля вообще выглядит как маленькое зернышко.

Вся Солнечная система также не обладает значительной протяженностью в масштабе Вселенной. Если рассматривать пределом системы границу гелиосферы, ее протяженность составляет около 120 астрономических единиц. При этом за одну а.е. принимают расстояние, равное ~ 150 млрд. км. А теперь представьте, что диаметр всей галактики Млечный путь, частью которой является Солнце с окружающими его планетами, равен 1 квинтиллиону километров. Это число в 18 нулями.  А само скопление разных небесных тел содержит, по разным подсчетам, от 2*1011 до 4*1011 звезд, большинство из которых превосходят по размерам наше небесное светило.

И ведь Млечный путь – не единственная галактика во всем космическом пространстве. На звездном небе Земли невооруженным глазом можно рассмотреть соседние звездные скопления: Андромеду, Большое и Малое Магеллановы облака. Расстояния до них измеряется в мегапарсеках — в миллионах световых лет. И каждая из них также простирается на немыслимые для человеческого разума расстояния.

Все скопления звезд группируются в крупномасштабные объединения – группы галактик. К примеру, Млечный путь и соседние формирования входят в Местную группу диаметром около 1 мегапарсека. Представьте, для того, чтобы лучу света пройти ее из одного конца в другой, понадобится 3,2 млн. лет.

Но и эта величина не является самой большой. Группы галактик, в свою очередь, объединены в сверхскопления или суперкластер. Эти крупномасштабные вселенские  структуры содержат сотни и тысячи галактических групп и миллионы звездных формирований. Так, в Суперкластере Девы, куда входит Млечный путь, расположено более 100 групп галактик. Протяженность этой структуры составляет более 200 млн. световых лет и эта лишь часть гигантского формирования Ланиакея.

Центр тяжести Ланиакеи – сверхскопление Великий аттрактор, притягивает к себе все остальные структуры этой части космического пространства. Его можно смело назвать центром Вселенной, с оговоркой, что это лишь сердцевина познанного нами космоса. Вся же Ланиакея имеет диаметр более 500 млн. световых лет. И, чтобы в окончательно осознали масштабы Вселенной, представьте, что это гигантское образование – всего лишь  та малая часть космоса, которую смог обозреть и представить человек.

Структура и строение Вселенной

Самым распространённым элементом является водород (H) — 75%, гелий (He) занимает порядка 23%, ну а оставшиеся 2% делят между собой кислород (O), углерод (С) и другие элементы.

Средняя плотность материи во Вселенной — 10-29 г/см3 (да-да, настолько низкая). Порядка 95% всей плотности разделены между двумя субстанциями: Тёмной энергией и Тёмной материей. Следует понимать, откуда взялись такие названия — всё, что находится во Вселенной — материя. Эта материя бывает двух видов: структурированная — это вещество (нечто осязаемое), и не имеющая структуры — энергия (также существует, но увидеть не можем). Ну и вещество делится на тёмное и обычное, но деление происходит не по цвету, а по способности взаимодействовать с электромагнитным излучением (если не может — тёмное).

Таким образом, становится понятна структура Вселенной — некая энергия с неким веществом в ней, которое мы не можем наблюдать, так как оно не испускает электромагнитного излучения, а также межгалактический газ, Звёзды, планеты и иные привычные нам небесные тела, занимающие крохотную часть общего пространства. Также следует знать, что для Вселенной нехарактерны такие понятия, как масса, размер или же форма. Это просто некая система, мы можем выделить лишь плотность в этой системе, состав, температуру и так далее.

Вселенную можно поделить на секторы: Галактики. Это такие системы, состоящие из звёзд, межзвёздной пыли, газа и тёмной материи. Все эти вещества вращаются вокруг некого центра. Таким образом и происходит разделение на галактики (например, звёзды, вращающиеся вокруг одного центра принадлежат к одной галактике, а вращающиеся вокруг другого — к другой).

Земля, кстати, принадлежит к Галактике «Млечный путь». А всего их порядка сотни миллиардов, а может и больше (кто же сосчитает). Но увидеть невооружённым взглядом мы можем лишь три из них, что наглядно демонстрирует нам, насколько огромна Вселенная, а она ещё и расширяется постоянно!

Так вот, в любой галактике огромное количество звёзд. Одной из таких звёзд является наше Солнце. Вокруг этой звезды вращаются планеты и иные небесные тела. И всё вместе это является сложной системой — Солнечной. И таких систем в каждой Галактике неисчислимое множество. Например, лишь один «Млечный путь» включает в себя порядка нескольких сотен миллиардов звёзд, многие из которых образуют такие же планетные системы, как и наша. Именно поэтому огромна вероятность наличия разумной жизни и на других планетах, о существовании которых мы можем лишь догадываться.

Думаю, стоит перечислить основные небесные тела, которые включает в себя наша Солнечная система.

В первую очередь, это планеты земной группы, то есть, схожие по строению с нашей Землёй:
Меркурий — горячая планета (она ближе всех к Солнцу); Венера — она хоть и вторая по удалённости от нашей звезды, но обладает самой высокой температурой на поверхности — около 400 градусов по Цельсию; красная планета Марс, расположена сразу за нашей Землёй.

Планеты гиганты: самая большая из них — Юпитер, его масса в 318 раз больше земной (!); Сатурн — интересен своей системой колец; Уран — относительно лёгкая планета; Нептун — самая маленькая из них.

Маленькие планеты, называемые карликовыми, также весьма интересны и являются неотъемлемой частью Солнечной системы.

На орбитах многих планет вращаются спутники, одним из таких является Луна — спутник нашей планеты.

Астероиды — очень распространённые небесные тела в системе, правда, они очень малы.

На небе мы, порою, так любим наблюдать Кометы. И правда, они весьма красивы. На удалении от звезды представляют собой небольшие (пару километров) скопления газов (льды, преимущественно). При приближении к Солнцу ледяная поверхность комет испаряется и мы можем наблюдать оставшееся облако пыли и газа даже без оптических приборов.

Надеюсь, теперь вы хорошо понимаете, что представляет из себя Вселенная.

Будущее Вселенной

Наше мироздание началось с маленькой точки. Быстрое развитие и расширение границ привело к образованию необъятных космических просторов. Но, будет ли остановлено расширение? Возможен ли обратный вариант развития, то есть сжатия в ту же исходную плотную точку?

Модели будущего Вселенной

В 1990-х годах, специалисты пришли к выводу, что реальны два варианта будущего Вселенной.

“Сжатие” космических просторов возможно! При достижении максимальных размеров, она может разрушиться. Плотность черной материи может достичь критических показателей, из-за чего будет сжиматься.

Также, существует предположение, что причиной разрушения мироздания могут стать черные дыры. Все звездные скопления могут прекратить передачу энергии и преобразоваться в черные дыры. Если температура космического пространства приблизиться к нулю, возможно их испарение. В результате чего, все разрушиться и наступит логичный конец.

Какова реальная структура Вселенной?

Долгое время научные представления человечества о космосе строились вокруг планет Солнечной системы, звезд и черных дыр, населяющих наш звездный дом – галактику Млечный путь. Любой другой галактический объект, обнаруживаемый в космосе с помощью телескопов, автоматически вносился в структуру нашего галактического пространства. Соответственно отсутствовали представления о том, что Млечный Путь – не единственное вселенское образование.

Эдвин Хаббл

Ограниченные технические возможности не позволяли заглянуть дальше, за пределы Млечного Пути, где по устоявшемуся мнению начинается пустота. Только в 1920 году американский астрофизик Эдвин Хаббл сумел найти доказательства того, что Вселенная значительно больше и наряду с нашей галактикой в этом огромном и бескрайнем мире существуют другие, большие и маленькие галактики. Реальной границы Вселенной не существует. Одни объекты расположены к нам достаточно близко, всего несколько миллионов световых лет от Земли. Другие наоборот, расположены в дальнем углу Вселенной, пребывая вне зоны видимости.

Прошло почти сто лет и количество галактик сегодня уже оценивается в сотни тысяч. На этом фоне наш Млечный путь выглядит совсем не таким огромным, если не сказать, совсем крохотным. Сегодня уже обнаружены галактики, размеры которых трудно поддаются даже математическому анализу. К примеру, самая большая галактика во Вселенной IC 1101 имеет диаметр 6 миллионов световых лет и состоит из более 100 триллионов звезд. Этот галактический монстр находится на расстоянии более миллиарда световых лет от нашей планеты.

Сравнение размеров

Структура такого огромного образования, каковым является Вселенная в глобальном масштабе, представлена пустотой и межзвездными образованиям – волокнами. Последние в свою очередь делятся на сверхскопления, межгалактические скопления и галактические группы. Самым малым звеном этого огромного механизма является галактика, представленная многочисленными звездными скоплениями – рукавами и газовыми туманностями. Предполагается, что Вселенная постоянно расширяется, заставляя тем самым двигаться галактики с огромной скоростью по направлению от центра Вселенной к периферии.

Структура Вселенной

Темная материя – она же пустота, сверхскопления, скопления галактик и туманности – это все последствия Большого взрыва, который положил начало образованию Вселенной. В течение миллиарда лет происходит трансформация ее структуры, меняется форма галактик, так как одни звезды исчезают, поглощенные черными дырами, а другие наоборот, трансформируются в сверхновые, становясь новыми галактическими объектами. Миллиарды лет назад в расположение галактик было совсем другое, чем мы наблюдаем сейчас. Так или иначе, на фоне постоянных астрофизических процессов, происходящих в космосе, можно сделать определенные выводы о том, что наша Вселенная имеет не постоянную структуру. Все космические объекты находятся в постоянном движении, меняя свое положение, размеры и возраст.

Телескоп Хаббл

На сегодняшний день благодаря телескопу Хаббл удалось обнаружить месторасположение наиболее близких к нам галактик, установить их размеры и определить местоположение относительного нашего мира. Стараниями астрономов, математиков и астрофизиков составлена карта Вселенной. Выявлены одиночные галактики, однако в большинстве своем, такие крупные вселенские объекты группируются по несколько десятков в группе. Средний размер галактик в такой группе составляет 1-3 млн. световых лет. Группа, к которой относится наш Млечный Путь, насчитывает 40 галактик. Помимо групп в межгалактическом пространстве имеется огромное количество карликовых галактик. Как правило, такие образования являются спутниками более крупных галактик, как наш Млечный путь, Треугольник или Андромеда.

Состав Вселенной

За группами галактик идут скопления, области космического пространства в которых существует до сотни галактик различных видов, форм и размеров. Скопления имеют колоссальные размеры. Как правило, диаметр такого вселенского образования составляет несколько мегапарсек.

Теория большого взрыва

Самые крупные образования во Вселенной – галактические сверхскопления, которые объединяют группы галактик. Самое известное сверхскопление – Великая Стена Клоуна, объект вселенского масштаба, растянувшийся в длину на 500 млн. световых лет. Толщина этого сверхскопления составляет 15 млн. световых лет.

Внутреннее устройство

Несмотря на всю необъятность, строение Вселенной представляется достаточно простым. Она однородна по плотности, изменяется во времени по строго определённым законам, поэтому однозначно постоянной считаться не может.

Вселенная многолика. Она включает в себя множество разнообразных компонентов, проявляющихся в разных формах. Самыми крупными структурами в ней считаются галактические нити, совместно с космическими пустотами, формирующие «стены».

В них группируются галактики Вселенной. Они представлены в огромном количестве порядка двух триллионов. Человечество проживает в Млечном пути, который расположен в стене, называемой комплексом сверхскоплений Рыб-Кита. Другие звёздные системы расположены чрезвычайно далеко от этой галактики. Тем не менее несколько из них можно рассмотреть невооружённым глазом. Они носят следующие названия:

  • Туманность Андромеды ближе всех расположена к Млечному пути и содержит звёзд в несколько раз больше, чем в нём. Её можно увидеть на небе, если находиться на северном полушарии Земли.
  • Магеллановы Облака — две своеобразные галактики-спутники Млечного пути. Они просматриваются в южном полушарии.
  • Галактика Треугольника меньше Млечного Пути и по массе, и по диаметру. Так же, как и Туманность Андромеды, видна на северном полушарии.

Охлаждение Вселенной

После взрыва все должно было снизить температуру.

Со снижением плотности и температуры внутри Вселенной начало происходить и снижение энергии в каждой частице. Это переходное состояние длилось до тех пор, пока фундаментальные силы и элементарные частицы не пришли к своей нынешней форме. Так как энергия частиц опустилась до значений, которые можно сегодня достичь в рамках экспериментов, действительное возможное наличие этого временного периода вызывает у ученых куда меньше споров.

Например, ученые считают, что на 10-11 секунде после Большого взрыва энергия частиц значительно уменьшилась. Примерно на 10-6 секунде кварки и глюоны начали образовывать барионы — протоны и нейтроны. Кварки стали преобладать над антикварками, что в свою очередь привело к преобладанию барионов над антибарионами.

Так как температура была уже недостаточно высокой для создания новых протонно-антипротонных пар (или нейтронно-антинейтронных пар), последовало массовое разрушение этих частиц, что привело к остатку только 1/1010 количества изначальных протонов и нейтронов и полному исчезновению их античастиц. Аналогичный процесс произошел спустя около 1 секунды после Большого взрыва. Только «жертвами» на этот раз стали электроны и позитроны. После массового уничтожения оставшиеся протоны, нейтроны и электроны прекратили свое беспорядочное движение, а энергетическая плотность Вселенной была заполнена фотонами и в меньшей степени нейтрино.

В течение первых минут расширения Вселенной начался период нуклеосинтеза (синтез химических элементов). Благодаря падению температуры до 1 миллиарда кельвинов и снижения плотности энергии примерно до значений, эквивалентных плотности воздуха, нейтроны и протоны начали смешиваться и образовывать первый стабильный изотоп водорода (дейтерий), а также атомы гелия. Тем не менее большинство протонов во Вселенной остались в качестве несвязных ядер атомов водорода.

Спустя около 379 000 лет электроны объединились с этими ядрами водорода и образовали атомы (опять же преимущественно водорода), в то время как радиация отделилась от материи и продолжила практически беспрепятственно расширяться через пространство. Эту радиацию принято называть реликтовым излучением, и она является самым древнейшим источником света во Вселенной.

С расширением реликтовое излучение постепенно теряло свою плотность и энергию и в настоящий момент его температура составляет 2,7260 ± 0,0013 К (-270,424 °C), а энергетическая плотность 0,25 эВ (или 4,005×10-14 Дж/м³; 400–500 фотонов/см³). Реликтовое излучение простирается во всех направлениях и на расстояние около 13,8 миллиарда световых лет, однако оценка его фактического распространения говорит примерно о 46 миллиардах световых годах от центра Вселенной.

Эта таинственная, необъятная Вселенная

Думаю, все понимают, что на многие фундаментальные вопросы человечество не знает ответов. И это нормально. Как минимум, неизвестность, которую у нас есть возможность познать, разжигает в каждом человеке искреннее любопытство и желание хотя бы одним глазком посмотреть, что же находится там — за пределами нашей планеты. Технологический и научный прогресс позволил нам запустить в космос телескопы, космические аппараты и возвести Международную космическую станцию. Так, постепенно, с течением времени человечество познакомилось не только с обитателями Солнечной системы, но и с теми объектами, что находятся за ее пределами. Особенно выдающимся в этом свете выглядит Нобелевская премия по физике, которую в этом году вручили за открытие экзопланет — небесных тел, которые вращаются вокруг других звезд и на поверхности которых, возможно, есть жизнь. Миллиарды звезд и триллионы галактик — разве может человеческий разум так легко представить себе эти масштабы? Исследователи сомневаются в этом. Но попытаться посмотреть на Вселенную и понять реальные размеры небесных объектов определенно стоит. Так что почему бы не сделать это прямо сейчас?

Кадр сайта The Size of Space, который показывает насколько большие все объекты во Вселенной

Эволюция

Полагаясь на достоверность Теории Большого взрыва, ученые предполагают, что эволюция Вселенной происходила в такой последовательности:

Эпоха сингулярности

Это наиболее ранний период развития мироздания. Небольшая точка, которая состоит из протонов и нейтронов, “взрывается”. Время такого “Бума” составляет всего 0,0001 секунды. После этого, стартовал процесс синтезирования частиц, за счет чего образуется водород и гелий. Из-за высочайшей температуры в миллиарды градусов, этот процесс происходит быстро, что приводит к расширению космического пространства.

Эпоха инфляции

В этот период, просторы Вселенной заполнила энергия одинаково высокой плотности, невероятно высокой температуры и давления. Это приводит к быстрому расширению и постепенному охлаждению. Эпоха знаменательна столкновением и разрушением частиц и античастиц. Это приводит к превосходству материи над антиматерией.

Темная материя

Еще одним доказательством в копилку теории Мультивселенной добавляет новое, крайне интересное исследование. Его результаты, как пишет Vice, предполагают, что черные дыры, образованные из свернутых вселенных, порождают темную материю, а наша собственная Вселенная может выглядеть как черная дыра для посторонних.

Одни из самых таинственных объектов во Вселенной, черные дыры, могут являться источником темной материи.

Отмечу, что темная материя – невидимая субстанция, на долю которой приходится большая часть массы Вселенной – хотя и не излучает обнаруживаемый свет, все же существует, так как оказывает гравитационное воздействие на скопления галактик и другие излучающие объекты в космосе.

Для объяснения темной материи был предложен ошеломляющий спектр гипотез, но теперь ученые предположили, что первичные черные дыры – гипотетические объекты, которые относятся к периоду зарождения Вселенной, «являются жизнеспособным кандидатом на темную материю». К такому выводу пришла международная команда исследователей из США, Японии и Тайваня, в работе, опубликованной в научном журнале Physical Review Letters в январе этого года.

И все же, на данный момент все эти концепции являются умозрительными, хотя физики ожидают, что новые способы наблюдения с помощью сложных телескопов в ближайшие годы помогут ответить на многие вопросы.

Отрицаемость

Рассматривая общие законы мироздания, нужно отметить принцип отрицания. Он играет важную роль в развитии Вселенной. Все процессы движутся, перетекают один в другой. При этом, перейдя из одной формы в другую, сущность начинает отрицать свое предыдущее состояние. Так, человек не может существовать в прошлом, но его нет и в будущем. С каждым последующим шагом настоящее становится недоступным для нас. Этот принцип применим для всего во Вселенной.

Понимание этого и предыдущих законов позволяет приоткрыть тайны мироздания. Этому принципу подчиняются все элементы, сущности и составляющие глобальной системы. Отрицание присуще как элементарным частицам, так и глобальным процессам в космосе. Во всех сферах бытия система проходит стадии отрицания одну за другой.

Понимание этого процесса позволяет осознать человеку, что собой представляет время. Его нужно понимать именно с этой точки зрения. Время не является некоим атрибутом пространства, которое пронизывает его насквозь.

По причине отрицаемости всему есть начало и конец. Если есть день, будет ночь. Все хорошие и плохие эмоции рано или поздно проходят. Процесс идет постепенно. На некоторые действия требуется много циклов отрицания, иные происходят быстро. То, что сейчас кажется новым, еще не наступившим, станет старым и прошлым. За победой следует поражение, а за упадком – процветание. Независимо от характеристик процесса (негативные или позитивные) он движется благодаря отрицанию.