Реферат на тему: история развития эвм

Содержание

Введение

Вычислительная
техника является неотъемлемой частью процесса вычислений и обработки данных.
Первыми устройствами для вычисления были, вероятно, известные счетные палочки,
которые до сих пор используются во многих начальных школах, чтобы научиться
считать. С развитием этих устройств они становились все более сложными, как,
например, финикийские глиняные фигурки, которые также предназначались для
визуализации количества предметов, подлежащих учету, но для простоты помещались
в специальные контейнеры. Похоже, что такие устройства использовались
трейдерами и бухгалтерами в то время.

 Постепенно из простейших счетных устройств
рождались все более сложные устройства: Абак (счет), логарифмическая линейка,
механическая арифметика, электронный компьютер. Несмотря на простоту ранних
вычислительных устройств, опытный бухгалтер может получить результат простым
подсчетом даже быстрее, чем вялый владелец современного карманного
калькулятора. Конечно же, мощность и скорость самих современных вычислительных
машин давно превзошли возможности самого выдающегося человеческого
вычислительного аппарата.

Компьютеры на микросхемах и микропроцессорах

Самыми лучшими характеристиками вычислительной мощности и эффективности обработки больших массивов информации обладают компьютеры, выполненные на интегральных микросхемах.

Микропроцессоры – основа современных компьютеров. Первые микропроцессорные компьютеры базировались на 8-разрядных процессорах — Intel-8080.

Создание персонального компьютера в привычном для нас виде связано с именем предпринимателя Стивена Джобса. При его участии было налажено массовое производство персонального компьютера Apple II.

Компьютер Apple II пользовался огромным успехом у покупателей и приносил колоссальный доход производителям в течение 15 лет.

Рис. 3. Компьютер Apple II.

Компьютеры в современном виде далеко ушли от своих прародителей. Современные технологии позволяют предъявлять высокие требования как к производительности, так и дизайну компьютерных вычислительных устройств.

Что мы узнали?

История развития ЭВМ берет свое начало с 30 годов прошлого столетия с создания вычислительных устройств, собранных на электромагнитных реле. Первые компьютеры имели низкую производительность и имели огромные размеры. С совершенствованием элементной базы улучшались характеристики компьютеров. Самыми высокопроизводительными компьютерами являются ЭВМ на микропроцессорах.

  1. /5

    Вопрос 1 из 5

Появление интегральных микросхем

В 1958-1960 годах, благодаря инженерам из Соединённых Штатов Роберту Нойсу и Джеку Килби, мир узнал о существовании интегральных микросхем. На основе из кремниевого или германиевого кристалла монтировались миниатюрные транзисторы и другие компоненты, порой до сотни и тысячи. Микросхемы размером чуть более сантиметра работали гораздо быстрее, чем транзисторы, и потребляли намного меньше энергии. С их появлением история развития вычислительной техники связывает возникновение третьего поколения ЭВМ.

В 1964 году фирмой IBM был выпущен первый компьютер семейства SYSTEM 360, в основу которого легли интегральные микросхемы. С этого времени можно вести отсчёт массового выпуска ЭВМ. Всего было произведено более 20 тыс. экземпляров данного компьютера.

В 1972 году в СССР была разработана ЕС (единая серия) ЭВМ. Это были стандартизированные комплексы для работы вычислительных центров, имевшие общую систему команд. За основу была взята американская система IBM 360.

В следующем году компания DEC выпустила мини-компьютер PDP-8, ставший первым коммерческим проектом в этой области. Относительно низкая стоимость мини-компьютеров дала возможность использовать их и небольшим организациям.

В этот же период постоянно совершенствовалось программное обеспечение. Разрабатывались операционные системы, ориентированные на то, чтобы поддерживать максимальное количество внешних устройств, появлялись новые программы. В 1964 году разработали Бейсик – язык, предназначенный специально для подготовки начинающих программистов. Через пять лет после этого возник Паскаль, оказавшийся очень удобным для решения множества прикладных задач.

ЭВМ пятого поколения

Они будут основаны на принципиально новой элементной базе. Основным их качеством должен быть высокий интеллектуальный уровень, в частности, распознавание речи, образов. Это требует перехода от традиционной фон-неймановской архитектуры компьютера к архитектурам, учитывающим требования задач создания искусственного интеллекта.

Таким образом, для компьютерной грамотности необходимо понимать, что на данный момент создано четыре поколения ЭВМ:

  • 1-ое поколение: 1946 г. создание машины ЭНИАК на электронных лампах.
  • 2-ое поколение: 60-е годы. ЭВМ построены на транзисторах.
  • 3-ье поколение: 70-е годы. ЭВМ построены на интегральных микросхемах (ИС).
  • 4-ое поколение: Начало создаваться с 1971 г. с изобретением микропроцессора (МП). Построены на основе больших интегральных схем (БИС) и сверх БИС (СБИС).

Пятое поколение ЭВМ строится по принципу человеческого мозга, управляется голосом. Соответственно, предполагается применение принципиально новых технологий. Огромные усилия были предприняты Японией в разработке компьютера 5-го поколения с искусственным интеллектом, но успеха они пока не добились.

Фирма IBM тоже не намерена сдавать свои позиции мирового лидера, например, Японии. Мировая гонка за создание компьютера пятого поколения началась еще в 1981 году. С тех пор еще никто не достиг финиша. Поживем – увидим.

P.S. Статья закончилась, но можно еще прочитать:

1. Аналитическая машина Бэббиджа

2. Леди Ада Лавлейс и первая компьютерная программа

3. Может ли компьютер быть умнее человека?

4. Пять возможностей сотовых телефонов, которых не хватает в наши дни

5. Виртуальная интерактивность: что такое VR, MR, AR и их отличия

Распечатать статью

Получайте актуальные статьи по компьютерной грамотности прямо на ваш почтовый ящик. Уже более 3.000 подписчиков

.

Важно: необходимо подтвердить свою подписку! В своей почте откройте письмо для активации и кликните по указанной там ссылке. Если письма нет, проверьте папку Спам

Настольные и аналоговые компьютеры

С
1930-х годов такие компании, как Friden, Marchant и Monro начали производить
механические настольные калькуляторы, которые можно было складывать, вычитать,
умножать и делить. Слово «компьютер» (буквально «карманный
калькулятор») использовалось для описания людей, которые использовали
карманные калькуляторы для выполнения математических вычислений. В 1948 году
была представлена Curta, небольшая механическая вычислительная машина, которую
можно было держать в одной руке. Первым полностью электронным настольным
калькулятором стал британский ANITA Mk VII, в котором использовался
газоразрядный дисплей на цифровых дисплеях. В июне 1963 года Фриден представил
EC-130 с четырьмя функциями. Он был полностью транзисторным, имел 13-значное
разрешение на 5-дюймовой электронно-лучевой трубке и был представлен компанией
на рынке калькуляторов стоимостью 2200 долларов. Позже были добавлены функция
вычисления квадратного корня и обратная функция. В 1965 году Wang Laboratories
выпустил LOCI-2, 10-значный настольный транзисторный калькулятор, который мог
вычислять логарифмы.

Аналоговый компьютер — это аналоговый компьютер (AVM), который представляет цифровые данные с использованием аналоговых физических величин (скорость, длина, напряжение, ток, давление), что является основным отличием от цифрового компьютера. До Второй мировой войны механические и электрические аналоговые компьютеры считались самыми современными машинами, и многие считали, что это будущее компьютерной техники.

Транзисторы. Выпуск первых серийных компьютеров

Однако лампы очень быстро выходили из строя, весьма затрудняя работу с машиной. Транзистор, изобретённый в 1947 году, сумел решить эту проблему. Используя электрические свойства полупроводников, он выполнял те же задачи, что и электронные лампы, однако занимал значительно меньший объём и расходовал не так много энергии. Наряду с появлением ферритовых сердечников для организации памяти компьютеров, использование транзисторов дало возможность заметно уменьшить размеры машин, сделать их ещё надёжнее и быстрее.

В 1954 году американская фирма «Техас Инструментс» начала серийно производить транзисторы, а два года спустя в Массачусетсе появился первый построенный на транзисторах компьютер второго поколения – ТХ-О.

В середине прошлого столетия значительная часть государственных организаций и крупных компаний использовала компьютеры для научных, финансовых, инженерных расчётов, работы с большими массивами данных. Постепенно ЭВМ приобретали знакомые нам сегодня черты. В этот период появились графопостроители, принтеры, носители информации на магнитных дисках и ленте.

Активное использование вычислительной техники привело к расширению областей её применения и потребовало создания новых программных технологий. Появились языки программирования высокого уровня, позволяющие переносить программы с одной машины на другую и упрощающие процесс написания кода («Фортран», «Кобол» и другие). Появились особые программы-трансляторы, преобразовывающие код с этих языков в команды, прямо воспринимаемые машиной.

Основные этапы

Процесс эволюции счетных устройств начался в древние времена и продолжается сегодня. За это время люди создали различные приспособления для счета. Краткая история их развития может быть описана с помощью основных этапов:

  1. Ручной. Это самый длительный этап. Он начался в глубокой древности, а завершился в середине XVII столетия. За это время были созданы различные ручные средства для подсчета, например, финикийские фигурки, логарифмическая линейка и т. д.
  2. Механический этап развития. Длился более двух столетий (вторая половина XVII — конец XIX века). Это время характеризуется быстрым развитием науки, что привело к появлению механических счетных машин. Они могли выполнять простые арифметические операции.
  3. Электромеханический. Среди всех этапов эволюции вычислительных устройств он оказался самым коротким. Его длительность составила лишь 60 лет. Начало электромеханическому этапу положило создание первого табулятора (1887), а завершился период в 1946 году. Созданные на этом временном отрезке устройства использовали электрический привод и реле. С их помощью скорость и точность вычислений существенно увеличились.
  4. Электронный этап начался в середине XX столетия и продолжается сегодня. Первые компьютеры имели большие размеры и существенно отличались от современных ПК.

История создания и развития компьютеров

Первое поколение ЭВМ: ламповые компьютеры

  • Большой электронный механизм требовал много электроэнергии и выделял много тепла.
  • Программное обеспечение в компьютере практически отсутствовало.
  • Количество команд, которые выполнял такой компьютер, было небольшим.
  • Выполнение действий было медленным, крайне мало было оперативной памяти.

Один из первых ламповых компьютеров – ENIAC

Появление транзисторов и второе поколение ЭВМ

транзистора

  • Габариты такого компьютера значительно уменьшились.
  • Увеличилась производительность – от сотен тысяч до 1 млн. операций в секунду.
  • Память компьютера составляла несколько десятков тысяч слов, оперативка достигала до 32 Кбайт.
  • Благодаря транзисторному компьютеру начинается развитие языков программирования высокого уровня.

США
Полезное чтение:

  • История создания Интернета
  • История часов: как возникли первые в мире часы?
  • История телефонов: как появился первый телефон?
  • История биткоина (Bitcoin) кратко

Третье поколение ЭВМ: первые стандарты

  • Компьютер значительно уменьшился в размере – его можно было с легкостью поставить на стол.
  • Производительность увеличена до миллионов операций в секунду.
  • За счет создания микросхем гораздо упростилась не только эксплуатация компьютера, но и его ремонт.
  • Машины третьего поколения были программно-совместимыми между собой, так как имели общую архитектуру.
  • Компьютер мог выполнять несколько задач одновременно.
  • В качестве внешних запоминающих устройств используются магнитные диски, которые работают гораздо быстрее своих предшественниц — магнитных лент.

IBM
Компьютер класса «мейнфрейм» – IBM System/360

Intel

Первые персональные компьютеры

Стивен ДжобсApple Computer
Один из первых серийных компьютеров – Apple II

Первые механические счётные устройства

В 1623 году немецким учёным Вильгельмом Шиккардом был создан первый механический «калькулятор», который он назвал считающими часами. Механизм этого прибора напоминал обычный часовой, состоящий из шестерёнок и звёздочек. Однако известно об этом изобретении стало только в середине прошлого столетия.

Качественным скачком в области технологии вычислительной техники стало изобретение суммирующей машины «Паскалины» в 1642 году. Её создатель, французский математик Блез Паскаль, начал работу над этим устройством, когда ему не было и 20 лет. «Паскалина» представляла собой механический прибор в виде ящичка с большим количеством взаимосвязанных шестерёнок. Числа, которые требовалось сложить, вводились в машину поворотами специальных колёсиков.

В 1673 году саксонский математик и философ Готфрид фон Лейбниц изобрёл машину, выполнявшую четыре основных математических действия и умевшую извлекать квадратный корень. Принцип её работы был основан на двоичной системе счисления, специально придуманной учёным.

В 1818 году француз Шарль (Карл) Ксавье Тома де Кольмар, взяв за основу идеи Лейбница, изобрёл арифмометр, умеющий умножать и делить. А ещё спустя два года англичанин Чарльз Бэббидж приступил к конструированию машины, которая способна была бы производить вычисления с точностью до 20 знаков после запятой. Этот проект так и остался неоконченным, однако в 1830 году его автор разработал другой – аналитическую машину для выполнения точных научных и технических расчётов. Управлять машиной предполагалось программным путём, а для ввода и вывода информации должны были использоваться перфорированные карты с разным расположением отверстий. Проект Бэббиджа предугадал развитие электронно-вычислительной техники и задачи, которые смогут быть решены с её помощью.

Примечательно, что слава первого в мире программиста принадлежит женщине – леди Аде Лавлейс (в девичестве Байрон). Именно она создала первые программы для вычислительной машины Бэббиджа. Её именем впоследствии был назван один из компьютерных языков.

История развития

Электромеханические машины времен ВМВ

A Symbolic Analysis of Relay and Switching Circuits

Mark I

  • 765 тысяч деталей (электромеханических реле, переключателей и т. п.)
  • Длина — 17 м, высота — 2.5 м, вес — 4.5 тонн
  • Потребляемая мощность — 4 кВт
  • Объем памяти — 72 числа, состоящих из 23 разрядов (память на десятичных цифровых колесах)
  • Вычислительная мощность — 3 операции сложения и вычитания в секунду, 1 операция умножения в 6 секунд, 1 операция деления в 15.3 секунды, логарифм и тригонометрические операции требовали больше минуты.

Mark 1

Z3-Z4

  • Арифметическое устройство: с плавающей точкой, 22 бита, +, −, ×, /, квадратный корень.
  • Тактовая частота: 5,3 Гц.
  • Средняя скорость вычисления: операция сложения — 0,8 секунды; умножения — 3 секунды.
  • Хранение программ: внешний считыватель перфоленты.
  • Память: 64 слова с длиной в 22 бита.
  • Ввод: десятичные числа с плавающей запятой.
  • Вывод: десятичные числа с плавающей запятой.
  • Элементов: 2600 реле — 600 в арифметическом устройстве и 2000 в устройстве памяти. Мультиплексор для выбора адресов памяти.
  • Потребление энергии: 4 кВт.
  • Масса: 1000 кг.

Z3

Первые ламповые компьютеры

ENIAC

  • Вес — 30 тонн.
  • Объем памяти — 20 число-слов.
  • Потребляемая мощность — 174 кВт.
  • Количество электронных ламп — 17 468
  • Вычислительная мощность — 357 операций умножения или 5000 операций сложения в секунду.
  • Тактовая частота — 100 кГц
  • Устройство ввода-вывода данных — табулятор перфокарт компании IBM: 125 карт/минуту на ввод, 100 карт/минуту на вывод.

Первый домашний компьютер массового производства в СССР

С 80-х годов XX века в Болгарии начали выпускать компьютер под названием «Правец». Это был клон второй версии Apple. Еще одним клоном, входящим в линейку «Правец», был «советский» IBM PC, базировавшийся на процессорах Intel 8088 и 8086. Более поздним клоном Oric Atmos была «домашняя» модель «Правец 8D» в небольшом корпусе и со встроенной клавиатурой. Она выпускалась с 1985 по 1992 годы. Компьютеры «Правец» стояли во многих школах Советского Союза.

Правец

Желающие собрать себе домашний компьютер могли воспользоваться инструкциями в журнале «Радио» 1982-83 гг. и воспроизвести модель под названием «Микро-80». Она базировалась на микропроцессоре КР580ВМ80, аналогичном Intel i8080.

В 1984 году в Советском Союзе появился компьютер «Агат», достаточно мощный по сравнению с западными моделями. Объем ОЗУ составлял 128 КБ, что вдвое превышало объем оперативной памяти у моделей Apple начала 80-х годов двадцатого века. Компьютер выпускался в нескольких модификациях, имел внешнюю клавиатуру с 74 клавишами и черно-белый либо цветной экран.

Агат

Производство «Агатов» шло до 1993 года.

История создания и развития компьютеров

Первое поколение ЭВМ: ламповые компьютеры

  • Большой электронный механизм требовал много электроэнергии и выделял много тепла.
  • Программное обеспечение в компьютере практически отсутствовало.
  • Количество команд, которые выполнял такой компьютер, было небольшим.
  • Выполнение действий было медленным, крайне мало было оперативной памяти.

Один из первых ламповых компьютеров – ENIAC

Появление транзисторов и второе поколение ЭВМ

транзистора

  • Габариты такого компьютера значительно уменьшились.
  • Увеличилась производительность – от сотен тысяч до 1 млн. операций в секунду.
  • Память компьютера составляла несколько десятков тысяч слов, оперативка достигала до 32 Кбайт.
  • Благодаря транзисторному компьютеру начинается развитие языков программирования высокого уровня.

США
Полезное чтение:

  • История создания Интернета
  • История часов: как возникли первые в мире часы?
  • История телефонов: как появился первый телефон?
  • История биткоина (Bitcoin) кратко

Третье поколение ЭВМ: первые стандарты

  • Компьютер значительно уменьшился в размере – его можно было с легкостью поставить на стол.
  • Производительность увеличена до миллионов операций в секунду.
  • За счет создания микросхем гораздо упростилась не только эксплуатация компьютера, но и его ремонт.
  • Машины третьего поколения были программно-совместимыми между собой, так как имели общую архитектуру.
  • Компьютер мог выполнять несколько задач одновременно.
  • В качестве внешних запоминающих устройств используются магнитные диски, которые работают гораздо быстрее своих предшественниц — магнитных лент.

IBM
Компьютер класса «мейнфрейм» – IBM System/360

Intel

Первые персональные компьютеры

Стивен ДжобсApple Computer
Один из первых серийных компьютеров – Apple II

Анализ ENIAC

 Отметим архитектурные достоинства машина ENIAC:

  •  SIMD-архитектура, распределенность и иерархия средств управления, смешанный синхронно-асинхронный способ управления вычислениями;
  •  параллелизм при обработке данных (допускалась одновременная работа нескольких вычислительных устройств и параллельная обработка десятичных разрядов чисел);
  •  ручная реконфигурируемость структуры (ручное программирование «неспециализированной» машины под структуру решаемой задачи);
  •  однородность, модульность и масштабируемость (варьируемость количества устройств).

Итак, машина ENIAC обладала совокупностью архитектурных свойств, которые присущи современным высокопроизводительным параллельным вычислительным системам. Проект ENIAC опережал возможности элементной базы (ламповой электроники).                  

Если исходить из характеристик элементной базы 1940-х годов (а в то время ламповые элементы были самыми быстродействующими), то можно указать на следующие недостатки машины ENIAC:

  •  ручное («механическое») трудоемкое программирование ВМ под структуру решаемой задачей (такое программирование длилось несколько часов или даже дней);
  •  низкая надежность, обусловленная применением большого числа ламп, электромагнитных реле, механических переключателей и кабелей, а также и ручным программированием структуры машины;
  •  малая емкость оперативной памяти (334 десятиразрядных десятичных чисел);
  •  громоздкость и дороговизна машины (18000 электронных ламп, 486000 долларов!):
  •  аппаратурная избыточность.

Большие ЭВМ.

Большие ЭВМ
за рубежом чаще всего называют мэйнфреймами
(Mainframe).
К мэйнфреймам относят, как правило,
компьютеры, имеющие следующие
характеристики:

-производительность не менее 10 MIPS (миллион
инструкций в секунду);

-основную память емкостью от 64 до 1000
Мбайт;

-внешнюю память не менее 50 Гбайт;

многопользовательский режим
работы (обслуживает одновременно от 16 до 1000
пользователей).

Основные
направления эффективного применения
мэйнфреймов — это решение научно-технических
задач, работа в вычислительных системах с
пакетной обработкой информации, работа с
большими базами данных, управление
вычислительными сетями и их ресурсами.
Последнее направление — использование
мэйнфреймов в качестве больших серверов
вычислительных сетей часто отмечается
специалистами среди наиболее актуальных.

Классификация ЭВМ по принципу действия.

Электронная
вычислительная машина, компьютер — комплекс
технических средств, предназначенных для
автоматической обработки информации в
процессе решения вычислительных и
информационных задач .

По принципу
действия вычислительные машины делятся на
три больших класса (рис.):аналоговые (АВМ),
цифровые (ЦВМ) и гибридные (ГВМ).

Рис.
Классификация вычислительных машин по
принципу действия.

Критерием
деления вычислительных машин на эти три
класса является форма представления
информации, с которой они работают.

Рис.
Две формы представления информации в
машинах:

а
— аналоговая; б — цифровая импульсная.

Цифровые
вычислительные машины
(ЦВМ)
— вычислительные машины дискретного
действия, работают с информацией,
представленной в дискретной, а точнее, в
цифровой форме.

Аналоговые
вычислительные машины
(АВМ)
— вычислительные машины непрерывного
действия, работают с информацией,
представленной в непрерывной (аналоговой)
форме, т.е. в виде непрерывного ряда
значений какой-либо физической величины (чаще
всего электрического напряжения).

Аналогичные
вычислительные машины весьма просты и
удобны в эксплуатации; программирование
задач для решения на них, как правило,
нетрудоемкое ;скорость решения задач
изменяется по желанию оператора и может
быть сделана сколь угодно большой (больше,
чем у ЦВМ), но точность решения задач очень
низкая
(относительная погрешность 2-5%).На
АВМ наиболее эффективно решать
математические задачи, содержащие
дифференциальные уравнения, не требующие
сложной логики.

Гибридные
вычислительные машины
(ГВМ)
— вычислительные машины комбинированного
действия, работают с информацией,
представленной и в цифровой, и в аналоговой
форме; они совмещают в себе достоинства АВМ
и ЦВМ. ГВМ целесообразно использовать для
решения задач управления сложными
быстродействующими техническими
комплексами.

Наиболее
широкое применение получили ЦВМ с
электрическим представлением дискретной
информации — электронные цифровые
вычислительные машины, обычно называемые
просто электронными вычислительными
машинами (ЭВМ), без упоминания об их
цифровом характере. 

Архитектура фон Неймана

Чтобы упростить процесс задания программ, Мочли и Экерт стали конструировать новую машину, которая могла бы хранить программу в своей памяти.

В 1945 г. к работе был привлечен знаменитый математик Джон фон Нейман совместно с другими учеными.

Журнал «Nature» в 1946 г. опубликовал статью Джона фон Неймана в соавторстве с другими менее известными учеными «Предварительное рассмотрение логической конструкции электронного вычислительного устройства». В этой статье ясно и просто были изложены общие принципы устройства и работы ЭВМ. Главный из них – принцип хранения в памяти программы, согласно которому данные и программа помещается в общую память машины.

Принципиальное описание устройства и работы компьютера принято называть архитектурой ЭВМ. Идеи, изложенные в упомянутой выше статьи, получили название «принципы Джона фон Неймана» или «архитектура фон Неймана».

Машина Эдвак

Совместной разработкой Мочли, Экерта и фон Неймана можно считать следующую модель после ENIAC – это машина Эдвак (EDVAC, сокр. от Electronic Discrete Automatic Variable Computer – электронный дискретный переменный компьютер). Ее более вместительная внутренняя память содержала не только данные, но и программу. В отличие от ENIAC это компьютер на двоичной, а не десятичной основе.

Как и ENIAC, EDVAC был разработан в Лаборатории баллистических исследований Армии США и является первым компьютером, построенным на основе принципов Джона фон Неймана.

Названные машины существовали в единственных экземплярах. А заводское, серийное производство ЭВМ началось в развитых странах мира в 50-х годах 20 века.

МЭСМ в СССР

В нашей стране (СССР) первая ЭВМ была создана в 1951 году. Называлась она МЭСМ – малая электронная счетная машина. Конструктором МЭСМ был Сергей Алексеевич Лебедев. Под его руководством в 50-х годах были построены серийные ламповые ЭВМ БЭСМ-2, М-20.

Ряд последующих машин и разработок С.А.Лебедева способствовали созданию более совершенных машин следующих поколений.

Когда компьютеры были большими

Жесткий диск (целая тумба), на который в начале 1960-ых годов мог поместиться всего один снимок, сделанный современным цифровым аппаратом

В заключение хочу предложить Вашему вниманию небольшой видеорепортаж из Музея информатики в Париже. Вы увидите своими глазами

  • электровакуумную лампу,
  • перфокарты,
  • процессор,
  • жесткий диск,
  • микропроцессор,
  • модем,
  • узнаете о двоичной системе счисления, принципах первого Интернета:

P.S. Статья закончилась, но можно еще прочитать:

1. Разностная машина Бэббиджа

2. Леди Ада Лавлейс и первая компьютерная программа

3. Экскурсия в Политехнический музей Москвы

4. Краткая история появления персонального компьютера IBM PC

Распечатать статью

Получайте актуальные статьи по компьютерной грамотности прямо на ваш почтовый ящик. Уже более 3.000 подписчиков

.

Важно: необходимо подтвердить свою подписку! В своей почте откройте письмо для активации и кликните по указанной там ссылке. Если письма нет, проверьте папку Спам

Механические устройства для вычислений

Как техническое средство вычислительная техника берет начало от арифмометров – механических вычислительных устройств, выполняющих поразрядные операции умножения, деления, сложения и вычитания. Известны «Считающие часы», созданные немецким ученым Вильгельмом Шиккардом (1623 г.), «Паскалина» – изобретение французского механика Блеза Паскаля (1642 г.), «Ступенчатый вычислитель» Готфрида Вильгельма Лейбница (1673 г).

Рис. 2. Арифмометр.

Итогом механического периода вычислительных приборов стала разработка английского ученого Чарльза Беббиджа, ставшая прообразом современного компьютера. Задумка аналитической машины, представляла собой проект вычислительного устройства общего назначения, в котором в качестве носителя информации использовались перфокарты. Эта машина, хоть и не была построена при жизни ученого, послужила примером для создания современных компьютеров.

Следующей вехой в развитии вычислительных комплексов явилось использование электромеханических устройств. Первым представителем семейства электромеханических машин стал табулятор Холлерита, разработанный в 1887 г, позволявший автоматизировать и ускорить обработку статистической информации.

Персональные компьютеры сегодня

  • Ученые Массачусетского технологического института работают над тем, чтобы устранить из персональных компьютеров провода. Это приспособление для передачи информации устарело и требует апгрейда — отличной заменой традиционным проводам станут импульсы германиевых лазеров, которые уже внедряют в компьютер.
  • Интересным направлением развития современного ПК можно считать внедрение в него различных умных гаджетов. Умные часы, сенсоры сердцебиения, датчики осанки – все это мы видели вне персонального компьютера, теперь же ведутся работы по внедрению в него этих полезных для здоровья находок.
  • В компьютер планируется внедрить новую технологию хранения данных – мемристорную память. Благодаря уникальным чипам из диоксида титана и платины компьютер сможет обрабатывать данные в 1 000 раз быстрее, совершать миллионы циклов перезаписи и моментально обрабатывать сведенья.
  • Для современных компьютеров длительное хранение энергии также является проблемой, поэтому ведутся активные разработки в направлении инновационных батарей для компьютера, которые позволят заряжать и разряжать аккумулятор много тысяч раз.
  • Последние разработки компьютеров и вовсе кажутся пугающими – нам предлагают совместить электронно-вычислительную машину с человеческим мозгом! Такая киборгизация компьютера предполагает присоединение своеобразной полимерной сетки с электродами к специальным имплантам-нейронам в мозге человека. Предполагается большой арсенал функций компьютера: от лечения болезни Альцгеймера и Паркинсона до управления сложными конструкциями силой мысли.

Тарас С.Частный инвестор, предприниматель, блогер. Инвестирую с 2008 года. Зарабатываю в интернете на высокодоходных проектах, криптовалютах, IPO, акциях и других активах. Со-владелец нескольких ресторанов и сети магазинов электронной техники. Консультирую партнеров, делюсь опытом.
Присоединяйся в Telegram-канал блога со свежими новостями.

Чат с консультантом в Телеграм.

Компьютеры второго поколения

Следующим
важным шагом в истории компьютерных технологий стало изобретение в 1947 году
транзистора, который стал заменой хрупким и энергоемким лампам. Благодаря
транзисторам и печатным платам размер и объем потребляемой энергии могут быть
значительно уменьшены, а надежность повышена. Однако компьютеры второго поколения
все еще были довольно дорогими и поэтому использовались только университетами,
правительствами и крупными компаниями. В 1959 году компания IBM выпустила
машину среднего класса IBM 1401 на базе транзисторов, которая использовала ввод
перфокарт и стала самым популярным компьютером общего назначения того времени:
с 1960 по 1964 год было выпущено более 100 000 экземпляров этой машины, и она
заняла около трети мирового компьютерного рынка.

Использование
полупроводников позволило улучшить не только центральный процессор, но и
периферию. Второе поколение запоминающих устройств позволило хранить десятки
миллионов символов и цифр. Замена дискового картриджа в сменном устройстве
заняла всего несколько секунд. Хотя емкость съемных носителей, как правило,
была меньше, взаимозаменяемость съемных носителей позволила хранить практически
неограниченное количество данных. Магнитная лента, как правило, использовалась
для архивирования данных, так как она предлагала большую емкость при меньших
затратах.

Появились
также сопроцессоры — специализированный процессор, расширяющий возможности
центрального процессора вычислительной системы, но выполненный в виде
отдельного функционального модуля.

Первое поколение компьютеров с архитектурой фон Неймана

Архитектура фон Неймана — известный принцип хранения программ и данных вместе в памяти компьютера. Первой машиной с такой архитектурой стала Baby, небольшая экспериментальная машина, созданная в Манчестерском университете в 1948 году; Манчестерский Марк I, за которым я последовала в 1949 году, уже представлял собой полноценную систему. В ноябре 1950 года группой ученых под руководством Сергея Лебедева УССР была создана так называемая «Малая электронная счетная машина» (МЭСМ). Он содержал около 6000 электрических вакуумных ламп и потреблял 15 кВт. Машина может выполнять около 3000 операций в секунду.

В
1954 году компания IBM выпустила IBM 650 весом около 900 кг и еще 1350 кг для
блока питания; оба модуля имеют размеры около 1,5 × 0,9 × 1,8 метра. Цена
машины — 500 000 долларов. (около 4 миллионов долларов США в 2011 году) или
могут быть арендованы за 3500 долларов США в месяц (30 000 долларов США в 2011
году). Память на магнитном барабане хранит 2000 10-символьных слов, позже
память увеличивается до 4000 слов.

В
1956 году компания IBM продала первое устройство хранения данных на магнитных
дисках — RAMAC. Использовалось 50 металлических дисков диаметром 24 дюйма и 100
дорожек с каждой стороны. Устройство хранит до 5 МБ данных и стоит 10 000
долларов за МБ. (В 2006 году такие запоминающие устройства — жесткие диски —
стоили около $0,001 за МБ).

Заключение

Инструменты
расчета появились достаточно давно, так как необходимость в различных расчетах
и вычислениях существовала уже на самых ранних стадиях развития цивилизации.
Различные устройства, которые облегчают и ускоряют процесс расчетов, были
изобретены людьми в очень далекие времена. Так что история учёта утрачена в
глубине веков, подобные устройства использовались многими народами.

К
сожалению, невозможно охватить всю историю компьютеров в рамках абстракции.
Можно было бы рассказать и о невидимой войне на компьютерных рынках за право
устанавливать стандарты между огромной корпорацией IBM и молодой компанией
Apple, которая осмелилась конкурировать с ней и заставила весь мир решить, что
лучше — Macintosh или PC. Современные персональные компьютеры являются наиболее
распространенным типом компьютеров, их производительность постоянно растет (по
закону Мура, количество транзисторов на интегральной схеме удваивается каждые
24 месяца), а спектр их применения расширяется. Эти компьютеры могут быть
объединены в сеть так, что десятки и сотни пользователей могут легко
обмениваться информацией и получать доступ к общим базам данных одновременно.

Около 50 лет назад человечество даже представить себе не могло, на что способны компьютеры! И чего мы можем ожидать в будущем? Пока не известно. Но ясно одно — создание искусственного интеллекта — это только вопрос времени.