«крамольные» ядерные реакции. перспективы альтернативной атомной энергетики

История исследований возможности ХЯС

Предположение о возможности холодного ядерного синтеза (ХЯС) до сих пор не нашло подтверждения и является предметом постоянных спекуляций, однако эта область до сих пор активно изучается.

ХЯС в клетках живого организма

Луи Кервран (фр.), опубликовал c 1960 по 1975 г. г. несколько статей и книг, в которых описывал «трансмутацию» углерода и кислорода в азот в живых организмах. За свои работы Кервран был удостоен Шнобелевской премии. Некоторые специалисты высмеяли Луи Керврана, например, в журнале «Химия и жизнь» в № 2 за 1977 г. опубликована шуточная статья «Биологическая трансмутация: факты, фантастика, теория»

«Члены-корреспонденты» ООО РАЕН В. И. Высоцкий (проф., зав. каф. математики и теоретической радиофизики Киевского национального университета) и А. А. Корнилова (к. ф. н., МГУ) опубликовали статью о «биологической трансмутации» в журнале, издаваемом РАЕН, также они распространяют свои идеи в книгах, изданных в России и за рубежом.

ХЯС в электролитической ячейке

Сообщение химиков Мартина Флейшмана и Стенли Понса об электрохимически индуцированном ядерном синтезе — превращении дейтерия в тритий или гелий в условиях электролиза на палладиевом электроде, появившееся в марте 1989 года, наделало много шума. Журналисты назвали их опыты «холодным термоядом».

Эксперименты Флейшмана и Понса не смогли воспроизвести другие учёные, и научное сообщество считает, что их заявления неполны и неточны и предствляют собой либо проявление некомпетентности, либо мошенничество.

Флейшман и Понс сделали вывод о ядерной реакции, обнаружив излучение нейтронов. Ак. РАН Эдуард Кругляков пояснил, что в экспериментах с пропусканием тока через палладиевый электрод возникает «искрение» на микротрещинах электрода, при этом ионы разгоняются до энергии порядка 1 кЭв, и этого может быть достаточно для получения небольшого количества нейтронов и объяснения плохой воспроизводимости результатов.

Экспериментальные подробности

Некоторые опыты по «холодному ядерному синтезу» включали в себя:

  • «катализатор», такой как никель или палладий, в виде тонких плёнок, порошка или губки;
  • «рабочее тело», содержащее изотопы водорода: тритий, дейтерий или протий;
  • систему «возбуждения» ядерных превращений изотопов водорода «накачкой» «рабочего тела» энергией — посредством нагревания, механического давления, воздействием лазерных лучей, акустических волн, электромагнитного поля или электрического тока.

Экспериментальная установка камеры холодного синтеза состоит из палладиевых электродов, погружённых в электролит, содержащий тяжёлую или сверхтяжёлую воду. Камеры для электролиза могут быть открытыми или закрытыми. В системах открытых камер газообразные продукты электролиза покидают рабочий объём, что затрудняет калькуляцию баланса между полученной и затраченной энергией. В экспериментах с закрытыми камерами продукты электролиза утилизируются, например, путём каталитической рекомбинации в специальных частях системы. Экспериментаторы, в основном, стремятся обеспечить устойчивое выделение тепла непрерывной подачей электролита. Проводятся также опыты типа «тепло после смерти», в которых избыточное (за счёт предполагаемого ядерного синтеза) выделение энергии контролируется после отключения тока.

Примечания

Комментарии
  1. Жвирблис, В. Биологическая трансмутация : факты, фантастика, теория // Химия и жизнь : журн. — 1977. — № 2.
Источники
  1. .
  2.  (фр.). Дата обращения: 1 августа 2019.
  3. . Дата обращения: 25 февраля 2013.
  4. Леенсон, И. А. Глава 5. Не попадитесь на удочку! // Шутят… химики! — 2-е изд. — М. : Интеллект, 2016. — ISBN 978-5-91559-223-9.
  5. ↑ . Кафедра математики и теоретической радиофизики. Киевский национальный университет имени Тараса Шевченко. Дата обращения: 31 июля 2019.
  6. Тунцов, Артём . Газета.ру (24 марта 2009).
  7. Taubes, Gary. Bad science : the short life and weird times of cold fusion : . — New York : Random House, 1993. — P. 6. — 503 p. — ISBN 0-394-58456-2. — ISBN 9780394584560.
  8. Статья перепечатана в:

  9. Царев В. Холодный ядерный синтез год спустя // Наука и жизнь, 1990, № 3. — с. 18-24
  10. ↑ .
  11. Смородов, Е. А. Физика и химия кавитации / Е. А. Смородов, Р. Н. Галиахметов, М. А. Ильгамов. — М. : Наука, 2008. — 228 с.
  12. .
  13. Bardi, Ugo . Cassandra’s legacy (март 2012). — «…the E-Cat has reached the end of the line. It still maintains some faithful supporters, but, most likely, it will soon fade away in the darkness of pathological science, where it belongs».
  14. Levi, Giuseppe; Evelyn, Foschi; Bo, Hoistad; Roland, Pettesson; Lars, Tegnér; Hanno, Essén. . AMS Acta (13 октября 2014).
  15. , p. 68, 73.
  16.  (недоступная ссылка). Дата обращения: 29 августа 2010.
  17.  (недоступная ссылка). Дата обращения: 29 августа 2010.
  18.  (недоступная ссылка). Дата обращения: 29 августа 2010.
  19.  (недоступная ссылка). Дата обращения: 3 января 2013.

Международные конференции по ХЯС

Конференции International Conference on Cold Fusion (англ.) (ICCF) проводятся с 1990 года в США, Японии и России.
С 2007 используют название «International Conference on Condensed Matter Nuclear Science».
Ранние мероприятия часто критиковались за привлечение псевдоучёных.

  1. ICCF-1 Солт-Лейк-Сити, США 1990
  2. ICCF-2 Комо, Япония 1991
  3. ICCF-3 Нагоя, Япония 1992
  4. ICCF-4 Гавайи, США 1993
  5. ICCF-5 Монте Карло, Монако 1995
  6. ICCF-6 Саппоро, Япония 1996
  7. ICCF-7 Ванкувер, Канада 1998
  8. ICCF-8 Леричи, Италия 2000
  9. ICCF-9 Пекин, КНР 2002
  10. ICCF-10 Кембридж, США 2003
  11. ICCF-11 Марсель, Франция 2004
  12. ICCF-12 Иокогама, Япония 2005
  13. ICCF-13 Дагомыс, Россия 2007
  14. ICCF-14 Вашингтон, США 2008
  15. ICCF-15 Рим, Италия 2009
  16. ICCF-16 Ченнай, Индия 2011
  17. ICCF-17 Тэджон, Южная Корея 2012
  18. ICCF-17 2012 KAIST ** Daejeon, South Korea Sunwon Park, Frank Gordon
  19. ICCF-18 2013 University of Missouri ** Columbia, Missouri, U.S. Robert Duncan, Yeong Kim
  20. ICCF-19 2015 TSEM ** Padua, Italy Antonio La Gatta, Michael McKubre, Vittorio Violante
  21. ICCF-20 2016 Tohoku University ** Sendai, Miyagi, Japan Jiro Kasagi, Yasuhiro Iwamura
  22. ICCF-21 2018 LENRIA ** Fort Collins, CO, U.S. Steven Katinsky, David Nagel

Пролог

Почему до сих пор мы используем традиционные источники энергии, когда уже много лет известны альтернативные источники сравнительно дешёвой энергии?

Причин этому масса, как то: экономические, технические и даже политические.

Но, начнём с самого начала.

Миллионы лет планета Земля с помощью всевозможных живых организмов перерабатывала углекислый газ в уголь, нефть и природный газ. Превращать все эти природный богатства обратно в углекислый газ оказалось сравнительно просто, достаточно было научиться использовать огонь. Собственно, этим человечество и занимается до сих пор.

По мере развития науки и техники, появились преобразователи энергии, позволяющие использовать энергию воды, солнца, ветра, геотермальных источников и даже энергию морских волн. Но все эти преобразователи имеют ряд недостатков, и главный из них — это зависимость от сил природы.

Попытки человечества обуздать энергию расщепляющегося атомного ядра до поры до времени имели успех, но оказались не менее опасными для природы, чем обычные тепловые электростанции.

Термоядерный реактор уровня «школьный проект по физике»[править]

В 1950 году некто Фарнсворт прикола ради сбацал фузор имени себя — он использует электростатический метод удержания плазмы (создание отрицательного потенциала в облаке электронов, который разгоняет ионы в направлении ловушки где уже и идет реакция), красиво светится синеньким и выглядит жутко научно. Толку от него нет вообще никакого — к критерию Лоусона он не подбирается даже близко, не смотря на неоднократные попытки его заубгрейдить. Зато при наличии некоторой суммы денег на топливо и электронные компоненты, а также при наличии прямых рук, собрать эту фигню можно даже дома. Но лучше не надо.

Что же нас ждёт в будущем?

В далёком будущем, нас ждут новые технологии получения энергии с помощью реакторов, так называемого, холодного ядерного синтеза. А в ближайшем будущем, нас в этом плане не ждёт ничего хорошего.

Первое и основное препятствие этому – экономические интересы. Крупный капитал ведёт бизнес согласно своим стратегическим планам, в которых пока нет места для новых технологий. Глупо выводить деньги из бизнеса, когда доходы всё время растут, как на дрожжах.

Так что, пока стоимость нефти и газа не обвалится настолько, что добыча станет нерентабельной, не стоит ждать прорыва в области новых технологий производства энергии. Но, цены вряд ли обвалятся, так как ресурсы всё время истощаются, а это напротив подстёгивает рост цен.

Теория

Согласно современной научной картине мира, для того, чтобы произошла ядерная реакция, необходимо сблизить ядра на расстояние, на котором работает сильное взаимодействие. Этому препятствует более дальнодействующее кулоновское отталкивание. Чтобы сблизить ядра, нужно затратить энергию порядка 0,1 МэВ, которой соответствует температура порядка 11 миллионов градусов (это нижний теоретический предел). На Солнце реакция идёт при температуре ~15 млн градусов и очень высоком давлении.

Для получения экономически эффективной установки ядерного синтеза в земных условиях нужна температура порядка 100 млн градусов. Поэтому большинство учёных относятся к заявлениям о ХЯС с большим скепсисом.

Кто сказал, что холодный синтез возможен?

Похоже на вымысел, не так ли? Красивая сказка, придуманная учеными, которые пытаются оправдать собственные потуги. Существует одна старая история, которая по своей природе очень похожа на сказки про холодный синтез. Она началась еще в 1770 году, еще когда никто не мог подумать не то чтобы о ядерном синтезе — даже современной теории атомов не существовало. Это история про самый первый автомат для игры в шахматы, Mechanical Turk («Механический турок») Вольфганга фон Кемпелена.

Почти за двести лет до изобретения современного компьютера «Турок» мог предложить очень сильную игру в шахматы, выиграл большинство своих игр и победил почти всех, не считая самых лучших игроков на то время. Его считали мистификацией, но множество выставок, на которых показали машину, подтвердили ее подлинность. Машина, казалось, не только обладает незаурядным шахматным мастерством, но и может обнаруживать подставные ходы.

«Турок» нуждался в ручной заводке, чтобы работать; было слышно, как внутри него поворачивались шестеренки. В дополнение к нижним ящикам, в которых были шахматная доска и фигуры, у него было шесть дверец, три спереди и три сзади. За левой дверью был набор взаимосвязанных металлических зубчатых колес, которые действительно поворачивались, если их завести. За правыми двумя была красная подушка и открытое пространство. Если открыть все три двери, можно было увидеть все внутренности «Турка».

Тот самый «Турок»

После победы во всех, кроме самого сильного регионального состязания, «Турок» отправился по Европе, где сыграл кучу игр, в том числе и против одного из самых сильных игроков того времени Андре Филидора, который хоть и победил, назвал игру с «Турком» одной из самых утомительных в своей жизни.

Но шестеренки слева и ящики на дне были ложными; они занимали лишь треть пространства, позволяя оператору — невысокому человеку, который скрывался внутри — оставаться незамеченным, когда правые двери были открыты. «Турок» был не автоматом, а очень хорошо спроектированной машиной, которой управлял оператор внутри. Но обман был раскрыт лишь в 1820-х годах. Пройдет еще 200 лет, и по-настоящему автоматическая программа наконец научится играть в шахматы на уровне «Турка».

Как работает токамак

Для создания внутри токамака магнитного поля, он составляется из секций, внутри которых намотаны катушки. Так как они идут по всей длине камеры и создают что-то вроде замкнутого тоннеля, получающееся магнитное поле называют тороидальным. Это и есть рабочая зона установки.

Конструкци токамака.

Перед началом работы из камеры токамака откачивают воздух, а вместо этого заполняют его смесью дейтерия и трития. Они и являются основой реакции термоядерного синтеза.

Преимущество использования этих двух элементов в том, что они очень дешевые. Дейтерий очень легко получается из воды, которой на нашей планете более чем достаточно, а тритий синтезируется пусть и чуть более сложным способом, но это тоже не является большой проблемой.

Когда камера заполнена, в ней создается вихревое электрическое поле, которое поддерживают плазму внутри камеры, а заодно разогревает ее, доводя до той самой температуры в несколько миллионов градусов.

Сейчас тут работают люди, а скоро будет 150 миллионов градусов.

Так как поле и нагрев создаются за счет увеличения тока в индукторе, а он не может увеличиваться бесконечно, время существования плазмы в стабильном состоянии пока не превышает нескольких секунд. Это и является главной причиной того, что мы пока не можем использовать токамаки в качестве источника промышленного получения энергии. Существую способы решения этой проблемы, в том числе с использованием микроволнового излучения, но пока работы в этом направлении еще ведутся.

Впрочем, микроволновое излучение и так применяется внутри токамака, так как только электромагнитного поля недостаточно для нагрева плазмы до температуры, необходимой для осуществления термоядерной реакции.

Обычная физика частиц четко говорит нам, что ядра с одинаковым зарядом отталкиваются друг от друга. Но при достижении сверхвысоких температур, они начинают вести себя иначе, образуя ядро гелия плюс один свободный нейтрон. Именно в этот момент и высвобождается огромное количество энергии. В обычных условиях она тратится на взаимодействие атомов между собой.

Физики и химики

Но вернёмся к «забракованному» открытию Флешмана и Понса. Все их коллеги заявляют, что всё-таки удалось создать условия, где атомы дейтерия подчиняются волновым эффектам, ядерная энергия высвобождается в виде тепла в соответствии с теорией квантовых полей. Последняя, кстати, прекрасно разработана, но адски сложна и к описанию каких-то конкретных явлений физики с трудом приложима. Именно поэтому, наверное, люди не хотят её доказывать. Флешман демонстрирует выемку в бетонном полу лаборатории от взрыва, случившегося, как он утверждает, от холодного термояда. Однако физики химикам не верят. Интересно, почему?

Ведь сколько возможностей для человечества закрываются с прекращением исследований в этом направлении! Проблемы же просто глобальные, и их много. И все они требуют решения. Это экологически чистый источник энергии, посредством которого можно было бы дезактивировать громадные объёмы радиоактивных отходов после работы атомных электростанций, опреснять морскую воду и много чего ещё. Если бы освоить выработку энергии способом превращения одних элементов таблицы Менделеева в совершенно другие без использования для этой цели потоков нейтронов, которые создают наведённую радиоактивность. Но наука официально и сейчас считает невозможным превращение каких-либо химических элементов в совершенно другие.

Что такое термоядерная реакция?

Ядерную энергию можно получить двумя способами: делением тяжелых ядер и синтезом (слиянием) легких ядер. Для слияния легких ядер необходимо, чтобы они сблизились на расстоянии около 10 в минус 12 см, так как ядерные силы действуют на очень маленьких расстояниях. Этому сближению препятствует кулоновское отталкивание ядер, которое может быть преодолено за счет большой кинетической энергии теплового движения ядер. Следовательно, подобные реакции могут протекать только при очень высоких температурах. Ядерный синтез, происходящий в разогретом веществе, называют термоядерным (термоядерная реакция).

Рис. 1. Термоядерная энергия.

Термоядерные реакции, идущие в недрах звезд, играют очень важную роль в эволюции Вселенной. Они – источник ядер химических элементов, которые синтезируются из водорода в звездах.

Уникальная особенность термоядерных реакций как источника энергии – это очень большое энерговыделение на единицу массы реагирующих веществ, примерно в 10 миллионов раз больше, чем в химических реакциях. Вступление в синтез одного грамма изотопов водорода эквивалентно сгоранию 10 тонн бензина. Поэтому ученые давно стремятся овладеть этим гигантским источником энергии. В принципе мы умеем уже сейчас получать энергию в результате реакции термоядерного синтеза. Нагреть вещество до звездных температур можно, используя энергию атомного взрыва. Так устроена водородная бомба – самое страшное оружие современности, в которой взрыв ядерного запала приводит к мгновенному нагреву смеси дейтерия с тритием и последующему термоядерному взрыву.

На Солнце в качестве основного источника энергии выступают реакции протон-протонного цикла, когда из четырех протонов рождается одно ядро гелия. Энергия, которая выделяется в процессе синтеза, уносится образующими ядрами, нейтронами, нейтрино и квантами электромагнитного излучения.

Рис. 2. Солнце.

Термоядерный реактор на антинаучной фигне[править]

Ну, тут всё просто: это холодный термоядерный синтез. Почему это невозможно — см. выше. Если же до вас не доходят фразы «звездная температура», «высокая энергия» и «термоядерная бомба», или вы насмотрелись на красиво светящееся доказательство того, что у Тони Старка есть сердце (об этом ниже), физика тут бессильна, а вот медицина заинтересуется. А если не все готовы верить Визарду на его авторитетное, но не всегда достаточно убедительное слово — ну вы вот представьте себе мюонный катализ. Мюон на орбите — он вместо электрона, но он очень тяжёлый по сравнению с. В результате его орбита практически «скребёт по ядру» и заряд таки уравновешивается. Отталкивание ослабевает (соседний атом для вступления в химическую связь приближается на опасное расстояние) и реакция начинается! Вот это — да, работает (только мюонов не напасёшься, а то мы бы давно бы). А тут приходит какой-то гриб-весёлка с горы и начинает втирать, что подобным образом может работать растворение водорода в соответствующем металле. При размерах кристаллической решётки-то! Да там от любого ближайшего «компенсатора заряда» до ядра как кузнечику до Луны.

Внешне «реакторы холодного синтеза» могут быть похожи на фузоры, однако в отличие от них там нет обвеса, только провод, идущий в розетку. По сути дела все эти «реакторы» — это электронагреватели, что свидетельствует о том, что их авторы даже фузор собрать не в состоянии по причине дефицита мозгов. В особо чудовищных случаях в конструкции есть лампочка. Хотите посадить автора в лужу? Выньте штепсель из розетки, а также потребуйте полные чертежи устройства, потому что собранный без участия автора девайс работать не будет, что нарушает критерий научности и выдает мошенничество. Такие дела.

Да, о дуговом реакторе Тони Старка. Это никоим образом не термоядерный реактор, что бы там не говорил Тони Старк. Это — вы наверное удивитесь — топливный элемент, в пользу чего говорит наличие материалов платиновой группы (из которых делаются химические катализаторы), необходимость зарядки этой штуки (ох как просело напряжение после включения сердца Тони Старка) и не особо большая долговечность (по причине расходования палладия). Самым примечательным во всем этом являются слова Ивана Ванко про палладий у сердца. Извините мой французский, но кардиологи всего мира угорали над его словами очень долго (дело в том, что палладий активно используется в медицине). Но, эта фиговень красиво светится, а ещё благодаря ней костюм Железного Человека может летать, и для фанатов этого достаточно.

Термоядерный синтез

Ядерная энергия — продукт расщепления атомов. Синтез же получает энергию другим путём — методом соединения их друг с другом, когда не образуются смертоносные радиоактивные отходы, а небольшого количества морской воды хватило бы на производство такого же количества энергии, сколько получается от сжигания двух тонн угля. В лабораториях мира уже было доказано, что вполне возможен управляемый термоядерный синтез. Однако электростанции, которые использовали бы эту энергию, пока не возведены, даже строительство их не предвидится. Но двести пятьдесят миллионов долларов были потрачены только Соединёнными Штатами, чтобы исследовать такое явление, как управляемый термоядерный синтез.

Затем эти исследования были буквально дискредитированы. В 1989 году химики С. Понс (США) и М. Флешман (Великобритания) заявили на весь мир, что им удалось достичь положительного результата и запустить термоядерный синтез. Проблемы заключались в том, что учёные слишком поторопились, не подвергнув своё открытие рецензированию со стороны научного мира. СМИ мгновенно схватили сенсацию и подали это заявление как открытие века. Проверка была проведена позже, и обнаружились не просто ошибки в проведении эксперимента — это был провал. И разочарованию тогда поддались не только журналисты, но и многие весьма уважаемые физики мировой величины. Солидные лаборатории Принстонского университета потратили на проверку эксперимента более пятидесяти миллионов долларов. Таким образом, холодный термоядерный синтез, принцип его получения были объявлены лженаукой. Лишь маленькие и разобщённые группы энтузиастов продолжили эти исследования.

Суть

Теперь термин предлагают заменить, и вместо холодного ядерного синтеза будет звучать следующее определение: ядерный процесс, индуцированный кристаллической решёткой. Под этим явлением понимают аномальные низкотемпературные процессы, с точки зрения ядерных столкновений в вакууме просто невозможные — выделение нейтронов посредством слияния ядер. Эти процессы могут существовать в неравновесных твёрдых телах, стимулирующихся трансформациями упругой энергии в кристаллической решётке при механических воздействиях, фазовых переходах, сорбции или десорбции дейтерия (водорода). Это аналог уже известной горячей термоядерной реакции, когда сливаются ядра водорода и превращаются в ядра гелия, выделяя колоссальную энергию, но происходит это при комнатной температуре.

Холодный термоядерный синтез точнее определяется как фотоядерные реакции, химически индуцированные. Прямого холодного термоядерного синтеза так и не удалось достичь, но поисками были подсказаны совершенно другие стратегии. Термоядерная реакция запускается генерацией нейтронов. Механическое стимулирование химическими реакциями приводит к возбуждению глубоких электронных оболочек, рождая гамма- или рентгеновское излучение, которое перехватывается ядрами. То есть происходит фотоядерная реакция. Ядра распадаются, и генерируют таким образом нейтроны и, вполне возможно, гамма-кванты. Что же может возбудить внутренние электроны? Вероятно, ударная волна. От взрыва обычной взрывчатки.

Реактор холодного ядерного синтеза в стакане воды

После серии экспериментов, был построен весьма производительный реактор на основе наномембраны и резонатора оригинальной конструкции.

В видеоролике, показана работа реактора ХЯС с выделением аномально высокого количества тепла.

Чтобы убедить скептиков в подлинности эксперимента, были предприняты некоторые меры. В частности, установка была собрана на стеклянной подставке. Для регистрации отсутствия скрытого инфракрасного излучения была использована обычная свеча, а для регистрации отсутствия высокочастотного электромагнитного излучения – неоновая лампа.

Первичный источник энергии – батарея была подключена с помощью сравнительно тонкого провода, что исключает возможность передачи большого количества энергии в нагрузку.

Если Вы уже посмотрели этот ролик, то могли заметить, что реактор выделят большое количество тепла. Между тем, питание реактора осуществляется от батареи, составленной из четырёх обычных щелочных элементов типоразмера ААА. Ток, контролируемый с помощью амперметра, достигает величины всего 0,35 Ампера. Несложные расчёты позволяют сделать вывод, что КПД установки многократно превышает 100%, так как энергия батарей сравнительно мала.

Но, давайте лучше посчитаем.

Исходные данные:

Вода — 500 грамм

Начальная температура раствора — 22°С

Конечная температура раствора — 93°С

Время, затраченное на нагрев — 720 секунд.

Теплоёмкость воды — 4,2 Дж/Грамм*°С

Сколько всего выделилось энергии?

4,2*500 (гр) * 71 (°С) = 149100 (Дж)

Какая мощность требуется для этого?

149100 (Дж) / 720 (сек) ≈ 207 (Ватт)

Если бы батарея была даже литий-ионной и отдавала такую мощность, она должна была бы генерировать ток:

207 (Ватт) / (3,6 * 4) (Вольт) ≈ 14 (Ампер)

Понятно, что для столь высоких значений тока нужны были бы провода большего сечения, чем те, что были использованы.

Замеры тока батареи показали 0,35 Ампера. При этом под нагрузкой было зафиксировано напряжение 4,82 Вольта.

Посчитаем мощность, отдаваемую батареей:

4,82 (Вольт) * 0,35(Ампер) ≈ 1,7 (Ватт)

Остаётся рассчитать КПД:

207 (Ватт) / 1,7 (Ватт) ≈ 122 (Раз)

Поспешу ответить на вопрос о перспективах данной технологии. Пока не удалось обеспечить продолжительную работу реактора из-за быстрого разрушения мембраны. Среднее время работы ректора – 35 минут. Рекордное – 1 час 23 минуты. Так что, подключить реактор к батарее парового отопления пока не получится.

Возможет ли холодный синтез?

Самый лучший способ извлечь энергию из материи — это преобразовать ее массу в энергию напрямую, по формуле Эйнштейна E = mc2. В отличие от химических реакций, которые высвобождают энергию в электрон-вольтах (эВ) на атом, в котором протекают, ядерные реакции — вроде синтеза и деления — выпускают мегаэлектрон-вольты (МэВ) энергии на атом: в миллион раз больше. Самый мощный ядерный взрыв, который когда-либо гремел на Земле, в энергетическом эквиваленте был равен примерно массе яблока и был достаточно силен, чтобы уничтожить большой город целиком.

Холодный синтез многим кажется фантастикой

Ядерный синтез, однако, протекает между заряженными частицами вроде атомных ядер, и барьер отталкивания таких зарядов весьма силен. Чтобы подвести два протона достаточно близко, чтобы они слились, потребуется температура в 4 миллиона Кельвинов, которая приведет к уже известному нам синтезу: горячему синтезу. По этой причине для зажигания ядерного синтеза в водородной бомбе, самом мощном оружии, придуманном людьми, необходима ядерная бомба. По части магнитного ограничения синтеза (конфайнмента) и инерциального конфайнмента, когда мощные магнитные поля или серия лазерных импульсов удерживают и сжимают плазму, заставляя ядра сливаться, за последние несколько десятилетий был достигнут определенный прогресс. В ходе этих реакций извлекается все больше и больше энергии, чем было затрачено на их запуск и поддержание, но мы все еще далеки от точки невозврата: когда в процессе реакции появляется намного больше энергии, чем было затрачено на запуск всей цепочки реакций.

Если мы сможем достичь точки безубыточности, это будет настоящий прорыв, поскольку энергия синтеза чистая, не производит радиоактивных отходов, а топливо для нее дешевое и практически неограниченное. Пока что традиционный «горячий синтез» требует поддержания невероятно высоких температур, чтобы все работало, а для этого нам нужно построить собственное миниатюрное солнце; собственно, эти технические трудности прежде всего объясняют, почему мы до сих пор никуда не пришли. Но есть и другая возможность: холодный синтез. Вместо того чтобы поддерживать температуры в миллионы градусов, холодный синтез — недавно переименованный в LENR — в теории позволит эффективно проводить повторяющиеся реакции при значительно более низких температурах, в тысячи градусов или даже чуть выше комнатной температуры. Он мог бы обеспечить нас дешевой и изобильной энергией и даже поселиться в каждом доме.

Другие эксперименты

США, 2002

8 марта 2002 года в солидном международном научном журнале «Сайенс» появилось сообщение о наблюдении «явлений, не противоречащих возможности» ХЯС. Русско-американская группа исследователей под руководством Руси Талеярхана в эксперименте с ультразвуковой кавитацией ацетона, в котором простой водород замещён дейтерием, наблюдала замену дейтерия тритием и излучение нейтронов во время сонолюминесценции. При этом установка не выделяла дополнительную энергию. Сразу же после публикации физик Нэт Фиш (англ. Nat Fisch, занимается Физикой Плазмы в Принстонском университете) высказался: «То, что я видел, производит впечатление безграмотного и неряшливого отчёта».

Два других сотрудника Окриджской лаборатории повторили эксперимент на той же аппаратуре с другим детектором и не обнаружили поток нейтронов, который наблюдал Талеярхан.

Кроме того, критики указывают, что температура и энергия в центре схлопывающихся пузырьков на три порядка ниже, чем нужно для слияния ядер дейтерия.

Япония, 2008

В 2008 году отставной японский учёный Ёсиаки Арата (англ.) из Осакского университета совместно с китайским коллегой Юэчан Чжан из Шанхайского университета сообщили о выделении энергии в эксперименте с палладием, оксидом циркония и дейтерием под высоким давлением, и заявили, что они наблюдали реакцию холодного ядерного синтеза с выделением гелия. Авторы не сообщили никаких данных о деталях своих опытов, в том числе не предоставили для анализа методику измерений. Арата ещё в 2004 г. запатентовал свою установку в Японии и в 2006 г. — в США

Генератор Росси

В январе 2011 года Андреа Росси (англ.) (Болонья, Италия), как он сам утверждает, испытал опытную установку «Катализатор энергии Росси» по превращению никеля в медь при участии водорода, а 28 октября 2011 года им была продемонстрирована для журналистов известных СМИ и заказчика из США промышленная установка на 1 МВт. История вызвала всплеск интереса СМИ.

По одному из заявлений Росси в январе 2011 года, он имеет чёткое понимание о задействованном механизме, но отказывается публично его раскрывать, пока не будет получен патент.

Профессор Уго Барди (Ugo Bardi) из Флорентийского университета, отмечая противоречивые заявления Росси о наличии/отсутствии гамма-излучения, размещении производства (то во Флориде, то не в США), а также то, что часть сторонников и спонсоров уже вышла из проекта, в марте 2012 года высказался о нём:

В 2014 году группа профессора физики Болонского университета Джузеппе Леви исследовала параметры процесса. Дж. Леви сообщил, что устройство, в котором один грамм топлива нагревали до температуры около 1400ºС с помощью электричества, производило аномальное количество тепла.

«Энергонива»

Легендарный учёный из Магнитогорска А. В. Вачаев создал установку «Энергонива», с помощью которой им был обнаружен некий эффект трансмутации элементов и выработка электроэнергии в этом процессе. Верилось с трудом

Попытки обратить внимание фундаментальной науки на это открытие оказались тщетными. Критика раздавалась отовсюду

Наверное, авторам не нужно было самостоятельно выстраивать теоретические выкладки относительно наблюдаемых явлений, или физикам высшей классической школы стоило быть повнимательнее к экспериментам с высоковольтным электролизом.

Но зато была отмечена такая взаимосвязь: ни один детектор не зарегистрировал ни одного излучения, однако рядом с работающей установкой находиться было нельзя. В группе исследователей трудились шесть человек. Пять из них вскоре умерли в возрасте от сорока пяти до пятидесяти пяти лет, а шестой получил инвалидность. Смерть наступила по совершенно разным причинам через некоторе время (в течение примерно семи-восьми лет). И тем не менее на установке «Энергонива» последователями уже третьего поколения и учеником Вачаева были проделаны опыты и сделано предположение, что низкоэнергетическая ядерная реакция имела место в экспериментах погибшего учёного.

Предыстория

История этого эксперимента ведёт начало от случайной встречи на курорте. Тогда мне понадобились обычные батарейки, и мы с супругой отправились в магазин. Там, увидев срок годности пальчиковых элементов Energizer (около десяти лет), я попытался пошутить, вспомнив, как Ходжа Насреддин обещал эмиру за 10 лет научить ишака разговаривать. Сам Хаджа Насреддин так прокомментировал это: «За десять лет, либо ишак умрёт, либо эмир…» Рядом стоящий покупатель прореагировал на шутку. Как оказалось, им был инженер с русскими корнями. Слова за слово и мы с ним уже обсуждали проблемы мировой энергетики. Разговор продолжился за рюмкой чая. В той дискуссии новый знакомый поведал мне интересную историю. Суть истории в том, что, в прошлом, мой визави работал в лаборатории по разработке опреснительных установок для Австралии. Установки эти работают на основе фильтров обратного осмоса. Так вот, в одном из экспериментов, им было получено аномальное выделение тепла, с сопутствующим разрушением мембраны. Тогда я не придал этому большого значения, но потом идея эта всплыла в памяти и начала меня преследовать. В результате, я пустился во все тяжкие – занялся экспериментальной физикой.

И. С. Филимоненко

Холодный термоядерный синтез исследовался в СССР уже в конце пятидесятых годов прошлого века. Реактор был сконструирован Иваном Степановичем Филимоненко. Однако в принципах действия этого агрегата никто не сумел разобраться. Именно поэтому вместо позиции безусловного лидера в области ядерно-энергетических технологий, наша страна заняла место сырьевого придатка, распродающего собственные природные богатства, лишающего целые поколения будущего. А ведь опытная установка уже была создана, и она производила реакцию тёплого синтеза. Автором самых прорывных энергетических конструкций, подавляющих радиацию, был уроженец Иркутской области, прошедший разведчиком всю войну от своих шестнадцати до двадцати лет, орденоносец, энергичный и талантливый физик И. С. Филимоненко.

Термоядерный синтез холодного типа был, как никогда, близок. Тёплый синтез проходил при температуре всего 1150 градусов по Цельсию, а основой была тяжёлая вода. Филимоненко отказали в патенте: якобы ядерная реакция невозможна при такой низкой температуре. Но синтез шёл! Тяжёлая вода разлагалась посредством электролиза на дейтерий и кислород, дейтерий растворялся в палладии катода, где и происходила реакция ядерного синтеза. Производство безотходное, то есть без радиации, а нейтронное излучение тоже осутствовало. Только в 1957 году, заручившись поддержкой академиков Келдыша, Курчатова и Королёва, чей автортет был непререкаем, Филимоненко сумел сдвинуть дело с мёртвой точки.