Ультрафиолетовое излучение

Содержание

Основные разновидности ламп УФО

 Уфо-лампы выпускаются разных видов. Перечислим самые популярные.

Кварцевые

В кварцевых УФ лампах электрическая дуга возникает в колбе из кварцевого стекла, заполненной газом. Фольга из молибдена с платиновыми элементами не дает прибору перегреваться при длительной работе. Именно за счет содержания кварца в лампах моделей прошлых лет обеспечивалась проницаемость для излучения.  Современные ультрафиолетовые светильники изготавливаются с применением увиолевого стекла. Новый материал стал применяться для уменьшения концентрации выделяемого озона, и производители постепенно переходят на современный улучшенный аналог кварцевого стекла.

 Бактерицидные ультрафиолетовые излучатели

Это те же газоразрядные электрические лампы с парами ртути. Специальное стекло колбы пропускает такое количество ультрафиолетовых лучей,  которого достаточно для эффективного воздействия на вредные микроорганизмы. Однако и от такого дозированного излучения необходимо защищать глаза и поверхность кожи, можно просто выйти из комнаты. После кварцевания нет необходимости проветривать помещение, так как ультрафиолет нежелательного спектра не выделяется.

Люминесцентные ультрафиолетовые лампы

Они работают по аналогии с обычными люминесцентными светильниками. Их производят в виде стеклянных трубок и покрывают изнутри люминофором. Слой этого специального раствора состоит из вещества, способного люминесцировать при подаче энергии. Внутрь закачивается инертный газ и пары ртути, которые под действием электричества излучают ультрафиолет. В работающей лампе можно заметить мерцание газа внутри колбы, свечение присутствует, но без ультрафиолетового оттенка. Мы видим привычный для нас дневной свет. Все дело в материале, из которого сделана колба. Обычное стекло сдерживает лучи ультрафиолетового спектра, не давая им проникать наружу. Так создается эффект естественного освещения, но чтобы загореть необходимо обычное стекло заменить на специальное кварцевое. В этом случае люминесцентная лампа будет излучать ультрафиолет.

 Амальгамные УФ лампы

Такие лампы занимают особое место среди других разновидностей. Внутри них к ртути добавлен висмут и индий. Эти элементы связывают ртуть и делают использование лампы более безопасным: попавший в воздух при случайном повреждении колбы газ не представляет серьезной угрозы здоровью человека. Помимо высокой степени безопасности, достоинством амальгамных устройств является практически нулевое загрязнение внутренней поверхности лампы в течение всего срока использования. Мощность лампы не только не снижается, так как пары ртути не оседают на стенках, но и значительно превышает изначально показатели других разновидностей.  Это позволяет применять меньшее количество лам для обеспечения той же эффективности при обеззараживании.

Подтипы[ | код]

Электромагнитный спектр ультрафиолетового излучения может быть по-разному поделён на подгруппы. Стандарт ISO по определению солнечного излучения (ISO-DIS-21348) даёт следующие определения:

Наименование Длина волны, нм Частота, ПГц Количество энергии на фотон, эВ Аббревиатура
Ближний 400—300 0,75—1 3,10—4,13 NUV
Ультрафиолет А, длинноволновой диапазон 400—315 0,75—0,952 3,10—3,94 UVA
Средний 300—200 1—1,5 4,13—6,20 MUV
Ультрафиолет B, средневолновой 315—280 0,952—1,07 3,94—4,43 UVB
Дальний 200—122 1,5—2,46 6,20—10,2 FUV
Ультрафиолет С, коротковолновой 280—100 1,07—3 4,43—12,4 UVC
Экстремальный 121—10 2,48—30 10,2—124 EUV, XUV

Ближний ультрафиолетовый диапазон часто называют «чёрным светом», так как он не распознаётся человеческим глазом, но при отражении от некоторых материалов спектр переходит в область видимого излучения вследствие явления фотолюминесценции. Но при относительно высоких яркостях, например, от диодов, глаз замечает фиолетовый свет, если излучение захватывает границу видимого света 400 нм.

Для дальнего и экстремального диапазона часто используется термин «вакуумный» (VUV), ввиду того, что волны этого диапазона сильно поглощаются атмосферой Земли.

Синопсис

В ближайшем будущем глобальное потепление заставило вампиров выйти из тени и попытаться вернуть себе землю.
Детектив-сержант Майкл Колфилд ( Джек Дэвенпорт ) обнаруживает, что его лучший друг Джек ( Стивен Мойер ) пропал без вести в ночь перед свадьбой. Расследование исчезновения Джека приводит Майкла на путь секретной военизированной организации по охоте на вампиров, поддерживаемой британским правительством и Ватиканом. Майкл узнает, что Джек стал вампиром. Майкл остается преданным своему другу и ненавидит жестокие методы, используемые агентами организации, включая Вона Райса ( Идрис Эльба ), до тех пор, пока он не понимает, что Джек лжет о своей ситуации и что охотники на вампиров правы в своей оценке вампиров. Он позволяет организации нанять себя, но надеется найти золотую середину.

На протяжении всего сериала Майкл и организация исследуют деятельность, связанную с вампирами, часто с медицинскими экспериментами. Отдельные случаи связаны с женщиной, которая может быть беременна плодом вампира, подопытным вампиром с синтетической кровью и вспышкой заболевания, связанного с вампиризмом. Вампиры организованы и, кажется, движутся к общей цели; организация должна определить свою повестку дня. Жизнь и работа в тени наносит личный урон агентам организации: отношениям Майкла с невестой Джека ( Колетт Браун ) угрожает его потребность скрыть от нее правду; Энджи Марш ( Сюзанна Харкер ) должна смириться с потерей своего мужа, который был убит организацией после того, как стал вампиром; Пт. У Пирса Хармана ( Филип Кваст ) диагностирован неизлечимый рак, но он опасается, что уход со своего поста может обречь мир на судьбу, которую уготовили ему вампиры.

Последний эпизод показывает, что план вампиров не предполагает порабощения человечества, как предполагалось. Вместо этого они планируют вызвать ядерную зиму , создав длительную тьму и полностью уничтожив угрозу человечеству с помощью искусственной чумы. Научные успехи, достигнутые в ходе их экспериментов, позволят им выжить за счет синтетической крови и размножаться живорождением, устраняя необходимость в человеческих жертвах.

Коротковолновое излучение

Оказывает на организм человека следующие эффекты:

  • бактерицидный и фунгицидный (стимулирует ряд реакций, в результате которых разрушается структура бактерий и грибов);
  • детоксикационный (под воздействием УФ-излучения в крови появляются вещества, которые нейтрализуют токсины);
  • метаболический (во время процедуры улучшается микроциркуляция, в результате чего органы и ткани получают больше кислорода);
  • корригирующие свертывающую способность крови (при УФ-облучении крови изменяется способность эритроцитов и тромбоцитов к формированию тромбов, нормализуются процессы свертывания).

Показания и противопоказания

Применение коротковолнового ультрафиолетового излучения эффективно при следующих заболеваниях:

  • заболевания кожи (псориаз, нейродермит);
  • рожистое воспаление;
  • риниты, тонзиллиты;
  • отиты;
  • раны;
  • туберкулез кожи;
  • абсцессы, фурункулы, карбункулы;
  • остеомиелит;
  • ревматическое поражение клапанов сердца;
  • ИБС;
  • эссенциальная гипертензия І-ІІ;
  • острые и хронические заболевания органов дыхания;
  • болезни органов пищеварения (язвенная болезнь желудка и двенадцатиперстной кишки, гастрит с повышенной кислотностью);
  • сахарный диабет;
  • длительно незаживающие язвы;
  • хронический пиелонефрит;
  • острый аднексит.

Противопоказанием к данному виду лечения является индивидуальная гиперчувствительность к УФ-лучам. Облучение крови противопоказано при следующих заболеваниях:

  • болезни психической сферы;
  • хроническая почечная и печеночная недостаточность;
  • порфирия;
  • тромбоцитопения;
  • каллезная язва желудка и двенадцатиперстной кишки;
  • снижение свертывающей способности крови;
  • инсульты;
  • инфаркт миокарда.

Приборы

Интегральные источники излучения – лампа ДРК-120 для полостных облучателей  ОУП-1 и ОУП-2, лампа ДРТ-4 для облучателя носоглотки.

Селективными источниками являются бактерицидные лампы ДБ различной мощности – от 15 до 60 Вт. Устанавливают их в облучателях типов ОБН, ОБШ, ОБП.

С целью проведения аутотрансфузий ультрафиолетом облученной крови используют аппарат МД-73М «Изольда». Источником излучения в нем является лампа ЛБ-8. Имеется возможность регулирования дозы и площади облучения.

Методика проведения процедуры

На пораженные участки кожи и слизистых воздействуют по схемам общего УФ-облучения.

При заболеваниях слизистой носа пациент находится в положении сидя на стуле, слегка запрокинув голову. Излучатель вводят на небольшую глубину поочередно в обе ноздри.

Облучая миндалины, используют специальное зеркало. Отражаясь от него, лучи направляются на левую и правую миндалины. Язык больного высунут, он удерживает его марлевой салфеткой.

Дозируют воздействия путем определения биодозы. При острых состояниях начинают с 1 биодозы, постепенно увеличивая ее до 3. Повторить курс лечения можно через 1 месяц.

Кровь облучают в течение 10-15 минут на протяжении 7-9 процедур с возможным повтором курса через 3-6 месяцев.

Ультрафиолетовый фонарик своими руками?

Умельцы
считают, что простейший ультрафиолетовый фонарик можно сделать в домашних
условиях всего за несколько минут. Для этого они советуют покрасить стекло
фонаря синим или фиолетовым маркером.

Далее
наложить слой прозрачного скотча и закрасить снова. И так несколько раз.

Однако не ведитесь на советы таких Кулибиных.

Краска и скотч не способны изменить длину волны, а значит в итоге вы получите обычный фонарик с фиолетовым излучением. Не более того.

Пользы
от такой самоделки не будет никакой. Для полноценного эффекта нужны настоящие
УФ светодиоды или ЛБ лампы с правильной волной.

Польза УФ-лучей

Аналогично естественному ультрафиолетовому излучению, идущему от Солнца, свет, вырабатываемый специальными приборами, воздействует на клетки растений и живых организмов, изменяя их химическую структуру. Сегодня исследователям известны лишь некоторые разновидности бактерий, способные существовать без этих лучей. Остальные же организмы, попав в условия, где отсутствует ультрафиолетовое излучение, непременно погибнут.

УФ-лучи способны оказать значимое влияние на происходящие метаболические процессы. Они повышают синтез серотонина и мелатонина, что оказывает положительное влияние на работу центральной нервной, а также эндокринной системы. Под действием ультрафиолетового света активизируется выработка витамина D. А это главный компонент, способствующий усвоению кальция и препятствующий развитию остеопороза и рахита.

История открытия[править | править код]

Вскоре после того, как было обнаружено инфракрасное излучение, немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и в противоположном конце спектра, с длиной волны короче, чем у фиолетового цвета.
В году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра.
Тогда, многие ученые, включая Риттера, пришли к соглашению, что свет состоит из трех отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента. В то время ультрафиолетовое излучение называли также «актиническим излучением».

Идеи о единстве трёх различных частей спектра были впервые озвучены лишь в году в трудах Александра Беккереля, Македонио Меллони и др.

Использование бактерицидных свойств ультрафиолета

УФ-лучи способны убить грибок, а также другие микробы, которые находятся на предметах, поверхности стен, пола, потолков и в воздухе. В медицине широко используются эти бактерицидные свойства ультрафиолетового излучения, и применение им находится соответствующее. Специальные лампы, вырабатывающие УФ-лучи, обеспечивают стерильность хирургических и манипуляционных помещений. Однако ультрафиолетовое бактерицидное излучение используется медиками не только в целях борьбы с различными внутрибольничными инфекциями, но и как один из методов устранения многих заболеваний.

Выбор и покупка ультрафиолетовой лампы для детей

Организм ребенка требует особого отношения, поскольку он еще не до конца окреп. Поэтому выбор ультрафиолетового излучателя должен быть тщательным. Самыми популярными моделями на рынке являются бактерицидные лампы «Солнышко».

Регулярное применение кварцевых ламп «Солнышко» позволяет существенно укрепить иммунную систему, компенсировать дефицит в организме витамина D, устранить воспаления в суставах и нарушения в работе сосудистой и дыхательной систем, излечить кожные и инфекционные болезни.

Кроме этого, популярностью у потребителей пользуются рециркуляторы воздуха, например, ОРББ-30х2 или РЗТ-300. Эти лампы относятся к категории закрытых приборов, поэтому в обрабатываемом помещении с включенным устройством могут находиться люди. Защита обеспечивается за счет металлического кожуха, внутри которого находится безозоновая лампа.

Кварцевая лампа «Солнышко» является одним из самых популярных приборов с ультрафиолетовым излучением для детей

Закрытые устройства имеют вентилятор, высасывающий воздух из помещения. Воздушные потоки, проходя через конструкцию вдоль лампы, очищаются и возвращаются обратно в комнату.

Рециркуляторы имеют обширную сферу применения:

  • бытовые помещения;
  • офисы;
  • детские игровые комнаты;
  • школьные классы;
  • помещения, где скапливается много людей (вокзалы);
  • аудитории и магазины;
  • помещения складского типа;
  • комнаты для курения;
  • общественные туалеты;
  • вирусологические лаборатории и больницы.

Облучатель-рециркулятор медицинский Armed CH-111-115 с пластиковым корпусом

Модельный ряд ультрафиолетовых ламп «Солнышко»

При покупке УФО (ультрафиолетового облучателя) торговой марки «Солнышко» нужно брать во внимание модификацию, поскольку каждая модель линейки обладает собственными свойствами. Модельный ряд УФО «Солнышко»:

Модельный ряд УФО «Солнышко»:

  • ОУФК 1 – прибор с небольшими габаритами и маленькой мощностью. Подходит для кварцевания детей в любом возрасте. Для полноценной обработки комнаты устройство необходимо переставлять с одного места на другое. Для обеззараживания помещений размером 12 м? потребуется около 20 минут;
  • ОУФК 2 – прибор характеризуется стабильной работой благодаря увеличению мощности. Охват площади также возрастает. Данная модель предназначена для взрослых. Не рекомендуется применять ее для детей, не достигших возраста 3 лет;
  • ОУФК 3 – эту модификацию можно назвать мини-солярием, поскольку УФО обеспечивает эффективный загар. Процедура обеззараживания помещения осуществляется очень быстро. Комната площадью 12 м? очистится за 12 минут;
  • ОУФК 4 – основное назначение этой модели – санитарная очистка помещений от вирусов и инфекций. Лампа выделяет лучи, находящиеся в рамках спектра С, что позволяет уничтожать различные вирусы гриппа. Допускается использование прибора для лечения заболеваний ЛОР-органов, однако, в дозированных порциях и с правильной корректировкой мощности. Категорически запрещено использовать устройство детям, не достигшим возраста 3 лет.

Процесс локального облучения ребенка с помощью лампы «Солнышко»

Преимущества и недостатки ультрафиолетовых ламп «Солнышко» для детей

С учетом невысокой цены УФО «Солнышко» обладают множеством преимуществ, среди которых:

  • лечение многих заболеваний;
  • снятие острого болевого синдрома;
  • снятие воспалительных процессов;
  • уничтожение вирусов и микробов.

Недостатков у этих приборов также немало:

  • непрактичный опасный корпус – корпусная часть лампы изготовлена из металла. В приборе отсутствует заземление, а размещение кабелей питания и платы выполнено вплотную к стенкам. Разборка и сборка крайне сложны;
  • отсутствует таймер – поскольку требования в отношении длительности процедур крайне жесткие, отсутствие таймера делает эксплуатацию лампы неудобной. Даже небольшие ошибки в дозировке ультрафиолета могут привести к высыханию слизистых оболочек и активизации заболевания с новой силой;

У бактерицидных приборов, выпускающихся под маркой «Солнышко», существуют как достоинства, так и недостатки

влияние на электрическую технику – при использовании лампы создаются значительные помехи для работы компьютера и телевизора. В некоторых случаях определенные устройства прекращают свою работу. Чаще всего подобные трудности становятся результатом старой проводки.

Лампы «Солнышко» способны нанести вред слизистым оболочкам, поэтому нужно строго придерживаться инструкции по эксплуатации. Так как в наборе имеется только одна пара очков, а купить их отдельно нельзя, данный нюанс можно отнести к еще одному недостатку этих приборов.

Как проводят курс коротковолнового ультрафиолетового облучения?

Ультрафиолетовые лучи хорошо помогают при многих болезнях, но с их применением есть одна сложность. Излучение может проникнуть в ткани лишь на небольшую глубину — не более 1 мм. Поэтому его приходится подводить непосредственно к тому месту, где нужно лечить.

Есть специальные аппараты и насадки, при помощи которых ультрафиолетовые лучи направляют в нос или в горло (на стенки глотки, миндалины).

Во время процедуры вас попросят сесть на стул перед прибором, немного запрокинуть голову и вставить насадку в рот или в нос. После этого врач включает аппарат — и КУФ начинает действовать. Вам не будет больно, и вообще, вы ничего не почувствуете. Нужно будет лишь посидеть минут 15, пока ультрафиолетовые лучи делают свое дело. Количество процедур бывает разным — назначения врача будут зависеть от заболевания.

Помимо непосредственного воздействия, УФ-лучи оказывают и общеукрепляющий эффект. Поэтому при некоторых респираторных заболеваниях помогает облучение лица, шеи, груди.

Лазеротерапия

Лазеротерапия
это лечебное применение низкоэнергетического лазерного излучения.

Лазерное излучение не имеет аналога в природе. Способно
нести высокую энергию, является монохроматичным (одноцветным), когерентным
(имеет одинаковую фазу излучения фотонов) и поляризованным, хорошо
фокусируется, имеет малую расходимость пучка. В медицине применяют
низкоэнергетическое лазерное излучение – для формирования биостимуляционных
эффектов (физиотерапевтическое направление).

В России лазеры применяются в биологии и медицине уже более
30 лет. Исторически сложилось так, что приоритет в раскрытии механизмов и в
биологическом применении находится в странах бывшего СССР.

За последние 15 лет механизмы действия во многом раскрыты и
уточнены. Воздействие низкоинтенсивных лазеров приводит к быстрому стиханию
острых воспалительных явлений, стимулирует репаративные (восстановительные)
процессы, улучшает микроциркуляцию тканей, нормализует общий иммунитет, повышает
резистентность (устойчивость) организма.

Лазерное излучение является неспецифическим биостимулятором
репаративных и обменных процессов в различных тканях. Ускоряет заживление ран, оказывая
при этом бактериостатический эффект в отношении возбудителей раневой инфекции,
улучшает регенерацию нервной и костной ткани. Обладает выраженным
противовоспалительным эффектом. Оказывает стимулирующее действие на клеточный и
гуморальный иммунитет. При бактериальном загрязнении раневой поверхности и при
обострении хронического воспалительного процесса более целесообразно применение
лазера ультрафиолетового диапазона. При вялотекущих воспалительных и
дегенеративно-дистрофических процессах необходимо воздействовать излучением
только красного или инфракрасного спектра.

Показания

Хирургические болезни (трофические язвы, длительно
незаживающие раны, гнойные воспалительные заболевания кожи и подкожной
клетчатки, проктит, парапроктит, трещины заднего прохода, геморрой, простатит,
заболевания артерий и вен, остеомиелиты, переломы костей с замедленной
консолидацией, деформирующий артроз, артриты и др.); кожные болезни (зудящие
дерматозы, экзема, токсидермия, красный плоский лишай и др.); стоматологические
заболевания (пародонтоз, пульпиты, альвеолиты, стоматиты и др.); заболевания
внутренних органов (бронхиты, пневмонии, бронхиальная астма, ИБС,
гипертоническая болезнь I-II стадии, язвенная болезнь,
дискинезия желчевыводящих путей, холециститы, колиты и др.); болезни нервной
системы (неврологические проявления остеохондроза позвоночника, нейропатии,
невралгии, симпатоганглиониты, травмы периферических нервов, вегетативная
дистония, мигрень, детский церебральный паралич, рассеянный склероз,
сирингомиелия); гинекологические заболевания (хронические и острые
воспалительные заболевания, эрозии шейки матки, дисфункциональные маточные
кровотечения, маститы, трещины и отек сосков молочных желез); заболевания
лор-органов воспалительного характера (тонзиллит, фарингит, отит, ларингит,
синусит), тимус-зависимые иммунодифицитные состояния.

Противопоказания

Активный туберкулез, злокачественные новообразования,
системные заболевания крови, инфекционные болезни, тяжелые заболевания
сердечно-сосудистой системы, сахарный диабет, тиреотоксикоз, индивидуальная
непереносимость фактора.

Для получения монохроматических лучей в настоящее время
применяют такие аппараты, как « Узор – 1», « Узор – 2», « Лазурит», «Раскос», «
Рикта» Рисунок 31.

Рисунок 31. внешний вид аппарата « Рикта»

Дезинфекция питьевой воды физическими методами

Физические способы очистки не подразумевают использования реагентов, вмешательства в состав воды. Больше всего распространение получили такие методы этой группы:

Метод ультрафиолетового облучения

В последнее время он становится все более популярен

В этом случае важно, что лучи, при длине волны 200–295 нм, проникая через клеточную стенку, устраняют патогенные микроорганизмы, воздействуют на РНД и ДНК, вызывают нарушения структуры мембран, клеточных стенок, в результате бактерии погибают.. Для определения соответствующей дозы излучения проводят бактериологический анализ воды – так выявляют присутствующие типы патогенных бактерий, их восприимчивость к лучам

Отметим, что итог работы сильно зависит от мощности лампы и от степени поглощения излучения жидкостью.

Для определения соответствующей дозы излучения проводят бактериологический анализ воды – так выявляют присутствующие типы патогенных бактерий, их восприимчивость к лучам. Отметим, что итог работы сильно зависит от мощности лампы и от степени поглощения излучения жидкостью.

Доза УФ-излучения – это произведение интенсивности излучения и его длительности, а значит, чем более устойчивы микроорганизмы, тем больше времени потребуется на дезинфекцию питьевой воды.

Такое излучение не меняет химический состав жидкости, не вызывает образование побочных веществ, то есть отсутствует вероятность нанесения вреда потребителю.

Кроме того, в случае с этой технологией невозможна передозировка: дело в том, что она имеет высокую скорость реакции, для обработки нужно лишь несколько секунд.

Правда, стоит сказать и о минусах методики. Если у обработки хлором есть пролонгирующий эффект, то результат от УФ-излучения сохраняется только на время непосредственного воздействия лучей на воду.

Подчеркнем, что лишь в заранее обработанной воде возможен удовлетворительный эффект. Ведь на уровне поглощения УФ-лучей сказываются примеси жидкости. Так, железо работает как своего рода щит для микроорганизмов, «прикрывая» их от лучей.

Система для УФ-излучения не так сложна: она представляет собой камеру из нержавеющей стали с установленной лампой, которая защищается чехлами из кварца. Вода, проходя через такую схему, оказывается под непрерывным воздействием ультрафиолета, благодаря чему полностью обеззараживается.

Метод ультразвуковой дезинфекции

Ультразвуковая дезинфекция питьевой воды базируется на методе кавитации: из-за ультразвука происходят резкие скачки давления, благодаря этому микроорганизмы разрушаются. Отметим, что ультразвук способен бороться даже с водорослями.

Этот способ пока широко не применяется и находится на этапе освоения. Его достоинством можно назвать способность работать даже в условиях высокого уровня мутности, цветности жидкости, и воздействовать на большую часть видов микроорганизмов.

Но стоит отметить, что этот метод работает только при малых объемах воды. Наравне с УФ-облучением он эффективен исключительно при непосредственном воздействии на воду. Ультразвуковое обеззараживание не стало популярным, так как оно требует установки непростой и дорогостоящей техники.

Термическая дезинфекция

В квартирах мы все используем данный метод дезинфекции питьевой воды – кипятим. Температура уничтожает большинство микроорганизмов. В масштабах промышленности эта технология оказывается малоэффективной, так как громоздка, требует много времени и при этом малоинтенсивна. Также термическая обработка не удаляет привкусы, болезнетворные споры.

Метод электроимпульсной дезинфекции

Эта технология использует электрические разряды для создания ударной волны. От гидравлического удара микроорганизмы погибают. Такой метод дезинфекции питьевой воды хорошо справляется с вегетативными, спорообразующими бактериями даже в мутной воде. Подчеркнем тот факт, что бактерицидные качества при этом действуют до четырех месяцев.

Минусом в этом случае будут большая энергоемкость и высокая цена.

Читайте материал по теме: Как проверить качество воды: 9 интересных способов и не только

Приёмники ультрафиолетового излучения.

Для регистрации ультрафиолетового излучения при λ > 230 нм используются обычные фотоматериалы. В более коротковолновой области к нему чувствительны специальные маложелатиновые фотослои. Применяются фотоэлектрические приёмники, использующие способность ультрафиолетового излучения вызывать ионизацию и фотоэффект: фотодиоды, ионизационные камеры, счётчики фотонов, фотоумножители и др. Разработан также особый вид фотоумножителей — каналовые электронные умножители, позволяющие создавать микроканаловые пластины. В таких пластинах каждая ячейка является каналовым электронным умножителем размером до 10 мкм. Микроканаловые пластины позволяют получать фотоэлектрические изображения в ультрафиолетовом излучении и объединяют преимущества фотографических и фотоэлектрических методов регистрации излучения. При исследовании ультрафиолетового излучения также используют различные люминесцирующие вещества, преобразующие ультрафиолетовое излучение в видимое. На этой основе созданы приборы для визуализации изображений в ультрафиолетовом излучении.

Применение в криминалистике

Учеными разработана технология, позволяющая обнаружить минимальные дозы взрывчатых веществ. Для этого используется прибор, в котором производится ультрафиолетовое излучение. Такое устройство способно определить наличие опасных элементов в воздухе и в воде, на ткани, а также на коже подозреваемого в преступлении.

Также находит свое применение ультрафиолетовое и инфракрасное излучение при макросъемке объектов с невидимыми и маловидимыми следами совершенного правонарушения. Это позволяет криминалистам изучить документы и следы выстрела, тексты, подвергшиеся изменениям в результате их залития кровью, чернилами и т.д.

Источники ультрафиолета — откуда он берется?

Так
откуда же берется опасный ультрафиолет? Помните детскую считалку – Каждый
Охотник Желает Знать Где Сидит Фазан.

Начальные буквы слов рассказывают о семи основных цветах, которые мы визуально различаем в солнечном спектре. Не всегда кстати, правильно.

Так вот, солнечный свет — это не просто желтый прозрачный лучик, это целый спектр лучей и разноцветные цвета в нем, составляют очень малую часть.

Большую долю (около 53%) занимает невидимое инфракрасное излучение, или попросту говоря тепло.

Мы его не видим, зато чувствуем.

Инфракрасные
лучи находятся с одного края спектра. А вот с другой стороны (Фазан –
Фиолетовый свет), как раз-таки и прячется наш ультрафиолет, плавно переходя в
рентгеновское излучение.

Хотя мы этого света и не видим, зато насекомые (и некоторые люди с отклонениями!) вполне способны его различать. Вот так его распознают пчелы.

Там, где на цветах темные пятна – это “посадочные” полосы для пчелки, куда ей нужно приземляться для сбора нектара.

Поговаривают,
что великий художник Клод Моне тоже видел ультрафиолет. И даже многие его
картины навеяны именно таким зрением.

Причина
была в катаракте одного глаза. После операции по удалению хрусталика, который и
останавливает “синие лучи”, не давая им попадать на сетчатку, у него и
появилась такая сверхспособность.

Многие картины он создавал с одним открытым глазом. Сначала закрывал правый глаз и рисовал одно полотно, затем левый и писал другое. Разница произведений была просто поразительна.

История открытия

Иоганн Вильгельм Риттер, 1804 год

После того, как было обнаружено инфракрасное излучение, немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и далее противоположного конца видимого спектра, с длинами волн короче, чем у излучения фиолетового цвета.

В 1801 году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Хлорид серебра белого цвета в течение нескольких минут темнеет на свету. Разные участки спектра по-разному влияют на скорость потемнения. Быстрее всего это происходит перед фиолетовой областью спектра. Тогда многие учёные, включая Риттера, пришли к соглашению, что свет состоит из трёх отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента.

Идеи о единстве трёх различных частей спектра впервые появились лишь в 1842 году в трудах Александра Беккереля, Мачедонио Меллони и др.

Существует ли защита от синего света?

Интересная особенность, практически каждая женщина и девушка знает, что находиться под прямыми солнечными лучами довольно опасно, и как правило на пляже они себе и своему ребенку наносят различные крема и средства, которые предотвращают или сильно ослабляют количество попадаемого на кожу ультрафиолета, поскольку в результате такого интенсивного УФ излучения можно получить довольно серьёзные осложнения вплоть до раковых заболеваний кожи. Но почему-то мало кто задумывается над тем, что не только наша кожа нуждается в защите от УФ, но и такой нежный орган как глаза, они как мы выяснили в этом материале также сильно подвержены негативному влиянию УФ лучей.

К счастью в настоящее время офтальмология не стоит на месте и совершила большой прорыв в области защиты зрения от ультрафиолета, в наше время разработаны линзы и очки, которые помогут полностью защитить глаза вас и ваших детей от негативного ультрафиолетового излучения как природного, так и искусственного происхождения. На рынке нашей страны уже представлен целый ряд очковых линз с оптическими покрытиями, которые помогают уменьшить влияние синего света на глаза.

Если в нашей полосе не так много солнечного света и наши дедушки, и бабушки очень часто сохранили хорошее зрение до глубокой старости, в наше время невозможно быть в стороне от огромного количества гаджетов, которые с каждым годом всё больше окружают нашу жизнь, а это в свою очередь самым негативным образом сказывается на здоровье глаз, поэтому позаботьтесь о здоровье глаз заранее, ведь как известно легче предотвратить болезнь чем её лечить.

Защититься от опасного ультрафиолета можно довольно легко достаточно использовать для этого очки или контактные линзы, но к сожалению далеко не все очки и линзы, смогут защитить ваши глаза от УФ излучения. Гарантированной защитой от УФ обладают только линзы со специальным покрытием.

Компания Crizal, официальным партнером которой является наша клиника проводила многолетние исследования и испытания результатом которых стало изобретение специального покрытия Crizal Prevencia, которое защищает глаза от опасного сине-фиолетового света, вызывающего гибель клеток сетчатки, и в тоже время оно пропускает сине-голубой свет, необходимый для общего хорошего самочувствия человека и регулировки его биологических часов. А так же Crizal Eyezen эти линзы созданы для оптимизации восприятия информации с цифровых экранов гаджетов в них применены 3 революционные технологии:

  • технология распределения оптической силы – увеличение оптической силы в нижней части линзы предназначена для поддержания требующих усилий механизма аккомодации и конвергенции наших глаз.;
  • защита от вредного синего света – Блокирует сине-фиолетовое излучение от экрана цифровых устройств и пропускает полезный сине-голубой свет. ;
  • технология волнового фронта обеспечивает максимально широкие поля зрения в сравнение с обычными однофокальными линзами.

Результат – отличная фокусировка, снижение утомляемости глаз и защита от синего излучения. Очки с этим покрытием представлены в нашем салоне оптики, а также мы можем изготовить линзы с таким покрытием для вашей оправы.

В нашей клинике вы не только сможете пройти комплексное обследование, после которого вы узнаете текущее состояние ваших глаз и получите рекомендации профессионального офтальмолога, но и сможете подобрать линзы или очки, по ваших индивидуальным характеристикам, которые смогут защитить ваше зрение от вредного ультрафиолетового излучения, но и помогут сохранить ваше зрение острым на долгие годы.

Очки против ультрафиолета

Фонарики и лампы UVB+UVA безопасны для зрения при непродолжительном использовании. При длительной работе, глаза необходимо защищать спец.очками, которые не пропускают данные лучи.

Обычное стекло конечно задерживает длинноволновое излучение, но в недостаточной степени.

А вот современные линзы для очков с этим справляются на ура. Поэтому простые очки (не солнцезащитные), через камеры с фильтрами UV и выглядят темными.

При случайном ожоге глаз резкое жжение вы почувствует только через несколько часов. Это будет похоже на ощущения, как при чистки лука или после сварки. С закрытыми глазами боль будет только усиливаться.

К утру на следующий день боль изменится. Появится чувство, что вам насыпали песок под веки. А солнечный свет будет сильнейшим раздражителем. Причем сами глаза могут и не иметь каких-то явных признаков поражения – краснота и т.п.

Комфортно
чувствовать себя вы сможете только в полной темноте. Даже после того, как
немного полегчает, все вокруг будет выглядеть как в дымке или тумане.

Эффект проходит через один-два дня, в зависимости от степени ожога. Так что будьте осторожны со всеми источниками ультрафиолета.