Принцип действия счетчика гейгера

Содержание

Необходимые компоненты схемы детектора

Для того чтобы собрать представленную схему потребуются приобрести следующие детали:

  1. Преобразователь высокого напряжения NoEnName_Null. Вход 3–5 В, выход до 300–1200 В. Размер модуля: около: 25×48 мм. Выходной ток максимум 50 мА, регулируемый модуль блока питания.
  2. Зарядное устройство Tikta Mini MICRO USB 1A TP4056. Литий-ионная плата 1×5 V позволяет заряжать аккумулятор с помощью разъема Mini USB или входа 4.5–5.5 В.
  3. Преобразователь напряжения DROK Mini DC Volts 1V — 5V, неизолированный модуль BOOST. Размеры печатной платы: 14.1×18.8×5.5 мм, входное напряжение: 1–5 В постоянного тока, выходное напряжение: 5.1–5.2 В постоянного тока, одиночный литиевый вход с выходным током 1–1.5 A.
  4. Arduino Nano V3.0 — плата ELEGOO Nano CH340 / ATmega328P без USB-кабеля. Совместимая с Arduino Nano V3.0.Nano использует чипы ATmega328P и CH340, с большим количеством аналоговых входных контактов и встроенной перемычкой + 5V AREF. Есть возможности макета Boarduino и Mini + USB с меньшими размерами, которое хорошо работает с Mini или Basic Stamp. Может получать питание через USB-соединение Mini-B, нерегулируемый внешний источник питания 7–12 В (контакт 30) или регулируемый внешний источник питания 5 В (контакт 27). Источник питания автоматически выбирает источник с самым высоким напряжением.
  5. OLED-дисплей HiLetgo 0,91 »  для Arduino STM32, подсветка не нужна, поскольку имеется самоподсветка. Цвет дисплея: синий. Использует распространенную шину I2C и работает на драйвере дисплея SSD1306. OLED с высоким разрешением для любого проекта микроконтроллера. 128×32 пикселей дает хороший четкий текст, может работать от 3.3 В. Разборчивый текст даже с 4-мя строками. Напряжение 5 В.
  6. Комплект резисторов 10М и 10К, соответствующих требованиям RoHS.
  7. Монолитный многослойный керамический конденсатор 470pf Hilitchi 550Pcs, допуск емкости: ± 5%. Основной материал: керамика. Цвет: желтый. Отличная влагостойкость, миниатюрный размер, большая емкость, надежная работа. Широкое применение в компьютерах, обработке данных, телекоммуникациях и промышленном управлении.
  8. Мини-кнопочный переключатель DPDT с мгновенным выходом, uxcell 6-контактный квадратный 7×7 мм, количество контактов: 6, шаг штифта: 4.5×1 мм, длина штифта 3.5 мм. Материал пластик, вес: 24 г.

Список деталей нужных для радиосхемы

  • 1 BPW34 фотодиода
  • 1 LM358 ОУ
  • 1 транзистор 2N3904
  • 1 транзистор 2N7000
  • 2 конденсатора 100 НФ
  • 1 конденсатор 100 мкФ
  • 1 конденсатор 10 нФ
  • 1 конденсатор 20 нФ
  • 1 10 Мом резистор
  • 2 1.5 Мом резистора
  • 1 56 ком резистор
  • 1 150 ком резистор
  • 2 1 ком резистора
  • 1 250 ком потенциометр
  • 1 Пьезодинамик
  • 1 Тумблер включения питания

Как вы можете видеть из схемы, она настолько проста, что собирается за пару часов. После сборки убедитесь, что полярность динамика и светодиода, являются правильными. Наденьте на фотодиод медные трубки и изоленту. Она должна плотно прилегать. Просверлите отверстие в боковой стене алюминиевого корпуса для тумблера, а сверху для фотодатчика, светодиода и регулятора чувствительности.

Интересно почитать: Как смастерить датчик движения своими руками.

Больше никаких дырок в корпусе быть не должно, так как схема очень чувствительна к электромагнитным наводкам. После того, как все электрические компоненты будут соединены, вставьте батарейки. Мы использовали три сложеные вместе CR1620 батареи. Изоленту обмотайте вокруг трубок, чтобы они не смещались.

Это также поможет закрыть свет от воздействия на фотодиод. Вот теперь всё готово для начала обнаружения радиоактивных частиц. Проверить его в действии можно на любом тестовом источнике радиации, который вы можете найти в специальных лабораториях или в школьных кабинетах, по проведению практических работ.

Как работает счетчик

Радиация не имеет опознавательных признаков (вкуса, цвета, запаха), без специальной аппаратуры невидимку не распознать. Идея счетчика радиоактивных частиц принадлежит немецким физикам Гейгеру и Мюллеру. Гейгер придумал, Мюллер воплотил идею в жизнь. Схема претерпела мало изменений за 90 лет, прошедших с выпуска первых приборов, настолько она проста и технически совершенна, на ее основе работает большинство современных дозиметров.

Рассмотрим принцип работы классического счетчика Гейгера на примере датчика СМБ-20. Детище компании Росатом представляет собой герметичный баллончик с проволочным анодом внутри. Анод (с зарядом плюс) и стальной корпус прибора (отрицательный катод), наполненный инертным газом, образуют конденсатор.

Ионизирующие частицы, ударяясь о стенки корпуса, выбивают из металла электроны. Прорываясь к аноду сквозь газовую среду, электроны сталкиваются с молекулами газа и пополняют компанию новыми частицами. Напряжение в несколько сотен вольт между полюсами ускоряет процесс, превращает электронный поток в лавину. Газовое наполнение становится проводником. Сила тока резко возрастает. Регистрирующее устройство фиксирует скачок. Одновременно импульс вызывает падение напряжения на встроенном резисторе (высокоомное сопротивление), разность потенциалов между анодом и катодом уменьшается, разряд гасится, и счетчик готов ловить следующую частицу.

Цилиндрический СМБ-20 фиксирует гамма и жесткое бета-излучение, вызванное энергетически активными частицами с высокой проникающей способностью. Для обнаружения мягкого бета-излучения используют плоские счетчики (БЕТА -2) круглые или прямоугольной формы со слюдяным окошком, пропускающим частицы, не способные пробить металлический корпус. Здесь используется тот же принцип работы.

Альфа-частицы плохо распознаются приборами, поскольку активно взаимодействуют с окружающей средой и моментально теряют энергию. Обычный счетчик ловит α-излучение только на расстоянии нескольких сантиметров от источника.

Какие параметры нужно учитывать при выборе счетчика

Устройство счетчика Гейгера позволяет определять уровень излучения с большой точностью. Но чтобы сделать правильный выбор, пользователь должен знать технические параметры разных моделей, их режимы работы, достоинства и недостатки:

  • Чувствительность. Этот параметр оценивается по соотношению количества микрорентген к числу импульсов, вызываемых излучением. Чувствительность может сильно варьироваться в зависимости от вида источника.
  • Площадь рабочей зоны. Этот показатель влияет на размеры устройства. Бытовой счетчик Гейгера имеет небольшие размеры, промышленные отличаются более внушительными габаритами. Чем обширнее площадь рабочей зоны, тем больше активных частиц сможет регистрировать прибор.
  • Рабочее напряжение. Этот показатель влияет на рабочие характеристики устройства. Среднее значение составляет 400 В.
  • Рабочая температура. Для моделей, которые разрешено использовать в общем применении, этот показатель находится в диапазоне от −50 до +70 градусов. Этот параметр очень важен, так как датчик используется в различных условиях, например, в реакторе, где температура может достигать высоких значений.
  • Рабочий ресурс. Он в среднем равен одному миллиарду улавливаемых импульсов. Этот параметр считается только в случае, когда аппарат включен и фиксирует частицы. При отсутствии воздействия напряжения или просто при хранении рабочий ресурс не уменьшается.
  • Мертвое время. Этот показатель указывает на период неактивности оборудования после срабатывания от уловленной частицы. Как правило, это значение равняется 10 микросекундам. Именно этот показатель влияет на то, что датчик может зашкалить и не отреагировать вовремя. Поэтому приборы необходимо закрывать свинцовыми экранами.

Все эти факторы указывают на правильную работу датчика и возможность его выбора для решения тех или иных поставленных задач. Счетчик Гейгера, благодаря своему принципу действия, применяется для изучения и контроля радиационного фона на АЭС, в радиоэкологии, медицине, быту, гражданской обороне, лабораторных и научных исследованиях и во многих других случаях.

Раньше счетчиками Гейгера радиация измерялась в рентгенах (Р). Сейчас используют обозначение по системе СИ, поэтому экспозиционная доза выражается в кулонах на килограмм. Чтобы пересчитать ее в рентгены, можно использовать уравнение: 1 Кл/кг = 3876 Р.

В радиационных измерениях основными понятиями являются доза и мощность. Первый показатель — это количество элементарных зарядов, образовавшихся в ходе ионизации вещества. Под мощностью подразумевают скорость образования дозы за единицу времени. Для организма опасна даже минимальная доза, она способна проявить себя отдаленными последствиями. По данным ВОЗ радиационные излучения — одна из основных причин онкологических заболеваний.

Как правильно выбирать

Чтобы точно ответить на вопрос, какой счетчик Гейгера лучше выбрать, необходимо рассматривать конкретные условия его применения и основные технические параметры:

  • Чувствительность – рассматривается как соотношение числа импульсов, задаваемых излучением, и количества микрорентген, выделяемого эталонным источником (имп./мкР). Скорость счета может измеряться и в импульсах за 1 сек. (имп./сек.).
  • Параметры площади, сквозь которую проходят частицы (см2). При ее большей величине количество улавливаемых частиц возрастает.
  • Рабочее напряжение. Его типичное значение составляет 400 В.
  • Ширина рабочей характеристики как расхождение между уровнем напряжения искрового пробоя и его значением в точке выхода на «плато». Стандарт – 100 В.
  • Наклон рабочей характеристики – допустимая статистическая ошибка при подсчетах (около 0,15%).
  • Рабочая температура (от -50 до +70 градусов).
  • Ресурс – максимальное число замеряемых импульсов до появления ошибки.
  • Мертвый период, когда проводится ток при срабатывании.
  • Собственный фон – излучение деталей устройства.
  • Диапазон возможной регистрации – спектр воспринимаемых фотонов и частиц.

Счетчик Гейгера является достаточно полезным устройством, которое используется в работе дозиметров при оценке параметров среды. Существуют разные модели с определенными техническими характеристиками. Они предназначены для регистрации гамма-фотонов, а также альфа и бета-излучения.

Из чего состоит дозиметр.

Часто задаваемые вопросы

Чем отличается счетчик Гейгера от дозиметра?
Счетчик Гейгера – это деталь, датчик ионизирующего излучения в дозиметрической аппаратуре. Дозиметр – прибор, определяющий накопленную дозу ионизирующего излучения. Радиометр – прибор, показывающий мощность дозы ионизирующего излучения в данный момент времени в данной точке.

Почему счетчик Гейгера трещит?
Электрические импульсы во внешней цепи, которые возникают при вспышке разряда, усиливаются. Именно их и регистрирует магнитный счетчик. Число таких импульсов зависит от уровня радиации и, соответственно, напряжения на его электродах. Чем выше радиация, тем сильнее треск.

Какие частицы регистрирует счетчик Гейгера?
Счетчик Гейгера способен регистрировать гамма-частицы и бетта-частицы так как остальные не могут проникнуть в счетчик и вызвать ионизации аргона. внутри счетчика.

От какой радиации нужен счетчик Гейгера?

Для того, чтобы измерение радиации счетчиком Гейгера следует знать о видах радиации. Все зависит от состава излучения, то есть из каких частиц оно состоит и насколько далеко источник. Именно виды частиц влияют на то, какие последствия вызовет излучение у человека. Альфа-частицы считаются наиболее безопасными для человека, но даже они при длительном воздействии способны вызывать заболевания, опухоли и необратимые изменения в организме. В это же время наиболее опасным видом излучений является излучение, в котором принимают участие бета-частицы. Так как это опасное излучение именно его чаще всего фиксирует счетчик Гейгера.

Бета-частицы могут быть как природного происхождения, так и результатом деятельности человека. Если в природе их можно встретить при извержении вулканов, то мы чаще всего сталкиваемся с ними из-за работы АЭС или химических лабораторий. Высокая концентрация таких элементов необратимо влияет на состояние человека. Бета-излучения становятся причиной онкологических заболеваний, опухолей, поражения костного мозга и слизистых оболочек. До конца еще не изучено какое влияние радиация может оказывать на организм в зависимости от ее концентрации и времени воздействия. Но количество жертв Чернобыля, Фукусимы и Нагасаки показывает, что действительно возможен как летальный исход, так и различные мутации и заболевания, сопровождающие человека всю дальнейшую жизнь. Так дети, которые родились на зараженных территориях уже рождались с большими отклонениями или вовсе не выживали.

Поэтому так важно проверять количество радиации и соответствие ее нормам. Человек не видит этого излучения и зачастую может не замечать его воздействия вплоть до появления серьезных заболеваний

Быть предупрежденным гораздо лучше, нежели стать жертвой опасного излучения. Ведь существуют современные способы уменьшения излучения и защиты от него.

Отсюда и хорошо видно, для чего нужен счетчик Гейгера. Только благодаря этому прибору можно провести быстрый и качественный мониторинг местности на наличие ионизирующих частиц. Благодаря тому, что сейчас выпускаются разные модели уже можно встретить как профессиональные приборы, так и бытовые. Бытовые приборы позволяют быстро и качественно проводить измерения радиационного фона в домашних условиях.

Схема и принцип работы счетчика

Чтобы понять, как работает счетчик Гейгера, нужно сначала изучить его конструкцию. Он выполняется в виде герметично запаянной гильзы, изготовленной из стекла или металла. Из нее откачивают весь воздух и заменяют его инертным газом с примесью спиртовых соединений или галогена. Для этого применяются следующие виды веществ:

  • неон;
  • аргон;
  • смесь из двух газов.

Внутри гильзы находятся коаксиально расположенные элементы. Они представляют собой электроды, с помощью которых и происходит измерение. Один из них играет роль анода, к нему подключается напряжение со знаком плюс, а другой — это катод, к которому подключена минусовая клемма.

Принцип работы счетчика Гейгера основывается на прохождении ионизирующих частиц через инертный газ, который находится под воздействием поля большого напряжения. Это приводит к образованию свободных электронов, направляющихся к аноду. К катоду при этом перемещаются ионы газа. За счет этого образуется электрический разряд. При его прохождении через счетчик импульсов определяется количество радиации, попавшей в трубку.

Именно поэтому счетчик Гейгера трещит во время измерений. Чем больше ионизирующих частиц, тем больше импульсов фиксируют электроды. Именно их слышно при работе этого датчика.

Параметры и режимы работы счетчика Гейгера

Чтобы рассчитать чувствительность счетчика, оцените отношение количества микрорентген от образца к числу сигналов от этого излучения. Прибор не измеряет энергию частицы, поэтому не дает абсолютно точной оценки. Калибровка устройств происходит по образцам изотопных источников.

Также нужно смотреть на следующие параметры:

Рабочая зона, площадь входного окна

Характеристика площади индикатора, через которую проходят микрочастицы, зависит от его размеров. Чем шире площадь, тем большее число частиц будет поймано.

Рабочее напряжение

Напряжение должно соответствовать средним характеристикам. Сама характеристика работы — это плоская часть зависимости количества фиксированных импульсов от напряжения. Ее второе название – плато. В этом месте работа прибора достигает пиковой активности и именуется верхним пределом измерений. Значение – 400 Вольт.

Рабочая ширина

Рабочая ширина — разница между напряжением выхода на плоскость и напряжением искрового разряда. Значение – 100 Вольт.

Наклон

Величина измеряется в виде процента от количества импульсов на 1 вольт. Он показывает погрешность измерения (статистическую) в подсчете импульсов. Значение – 0,15 %.

Температура

Температура важна, поскольку счётчик часто приходится применять в сложных условиях. Например, в реакторах. Счетчики общего использования: от -50 до +70 С по Цельсию.

Рабочий ресурс

Ресурс характеризуется общим числом всех импульсов, зафиксированных до момента, когда показания прибора становятся некорректными. Если в устройстве есть органика для самогашения, количество импульсов составит один миллиард. Ресурс уместно подсчитывать только в состоянии рабочего напряжения. При хранении прибора расход останавливается.

Время восстановления

Это промежуток времени, за который устройство проводит электричество после реагирования на ионизирующую частицу. Существует верхний предел для частоты импульсов, ограничивающий интервал измерений. Значение – 10 микросекунд.

Из-за времени восстановления (его ещё называют мертвое время) прибор может подвести в решающий момент. Для предотвращения зашкаливания производители устанавливают свинцовые экраны.

Немного из истории радиации

В 1895 году были открыты рентгеновские лучи. Год спустя была открыта радиоактивность урана, тоже в связи с рентгеновскими лучами. Ученые поняли, что они столкнулись с совершенно новыми, невиданными до сих пор явлениями природы. Интересно, что феномен радиации замечался несколькими годами раньше, но ему не придали значение, хотя ожоги от рентгеновских лучей получал еще Никола Тесла и другие работники эдисоновской лаборатории. Вред здоровью приписывали чему угодно, но не лучам, с которыми живое никогда не сталкивалось в таких дозах. В самом начале XX века стали появляться статьи о вредном действии радиации на животных. Этому тоже не придавали значения до нашумевшей истории с «радиевыми девушками» – работницами фабрики, выпускавшей светящиеся часы. Они всего лишь смачивали кисточки кончиком языка. Ужасная участь некоторых из них даже не публиковалась, по этическим соображениям, и осталась испытанием только для крепких нервов врачей.

В 1939 году физик Лиза Мейтнер, которая вместе с Отто Ганом и Фрицем Штрассманом относится людям, впервые в мире поделившим ядро урана, неосторожно сболтнула о возможности цепной реакции, и с этого момента началась цепная реакция идей о создании бомбы, именно бомбы, а вовсе не «мирного атома», на который кровожадные политики XX века, понятно, не дали бы ни гроша. Те, кто был «в теме», уже знали, к чему это приведет и началась гонка атомных вооружений

:: СЧЁТЧИК ГЕЙГЕРА ::

   Изобретенный Гансом Гейгером прибор, способный определить ионизирующее излучение, представляет собой герметизированный баллон с двумя электродами, куда закачивается газовая смесь, состоящая из неона и аргона, которая ионизируется.

На электроды подается высокое напряжение, которое само по себе никаких разрядных явлений не вызывает до того самого момента, пока в газовой среде прибора не начнется процесс ионизации.

Появление пришедших извне частиц приводит к тому, что первичные электроны, ускоренные в соответствующем поле, начинают ионизировать иные молекулы газовой среды.

В результате под воздействием электрического поля происходит лавинообразное создание новых электронов и ионов, которые резко увеличивают проводимость электронно-ионного облака. В газовой среде счетчика Гейгера происходит разряд. Количество импульсов, возникающих в течение определенного промежутка времени, прямо пропорционально количеству фиксируемых частиц.

   Он способен реагировать на ионизирующие излучения самых различных видов. Это альфа-, бета-, гамма-, а также рентгеновское, нейтронное и ультрафиолетовое излучения.

Так, входное окно счетчика Гейгера, способного регистрировать альфа- и мягкое бета-излучения, выполняется из слюды толщиной от 3 до 10 микрон. Для обнаружения рентгеновского излучения его изготавливают из бериллия, а ультрафиолетового – из кварца.

Схема паяется на небольшую печатную плату, и все это помещено в алюминиевый корпус. Медные трубки и кусок алюминиевой фольги используются для фильтрации радиочастотных помех.

Список деталей нужных для радиосхемы

  • 1 BPW34 фотодиода
  • 1 LM358 ОУ
  • 1 транзистор 2N3904
  • 1 транзистор 2N7000
  • 2 конденсатора 100 НФ
  • 1 конденсатор 100 мкФ
  • 1 конденсатор 10 нФ
  • 1 конденсатор 20 нФ
  • 1 10 Мом резистор
  • 2 1.

    5 Мом резистора

  • 1 56 ком резистор
  • 1 150 ком резистор
  • 2 1 ком резистора
  • 1 250 ком потенциометр
  • 1 Пьезодинамик
  • 1 Тумблер включения питания

   Как вы можете видеть из схемы, она настолько проста, что собирается за пару часов.

 После сборки убедитесь, что полярность динамика и светодиода, являются правильными.

   Наденьте на фотодиод медные трубки и изоленту. Она должна плотно прилегать.

   Просверлите отверстие в боковой стене алюминиевого корпуса для тумблера, а сверху для фотодатчика, светодиода и регулятора чувствительности. Больше никаких дырок в корпусе быть не должно, так как схема очень чувствительна к электромагнитным наводкам.

   После того, как все электрические компоненты будут соединены, вставьте батарейки. Мы использовали три сложеные вместе CR1620 батареи. Изоленту обмотайте вокруг трубок, чтобы они не смещались. Это также поможет закрыть свет от воздействия на фотодиод. Вот теперь всё готово для начала обнаружения радиоактивных частиц.

   Проверить его в действии можно на любом тестовом источнике радиации, который вы можете найти в специальных лабораториях или в школьных кабинетах, по проведению практических работ по этой теме.

Поделитесь полезными схемами

СЕРДЦЕ НА СВЕТОДИОДАХ

   Сегодня мы попробуем спаять простое эффектное украшение – светодиодное сердце. В схеме не используется дорогих радиодеталей.

ФМ УСИЛИТЕЛЬ

   Делаем качественный полуваттный передатчик с усилителем, для передачи аудиосигнала на FM радиовещательный приёмник.

САМОДЕЛЬНЫЙ MP3 ПЛЕЕР

    Данный MP-3 плеер поддерживает достаточно много функций, например случайное воспроизведение дорожек, навигация по дорожкам (вперед, назад, пауза), регулирование громкости звука воспроизведения. Также тут присутствует поддержка файловой системы FAT32, фрагментированных файлов. Качество звука и воспроизведения музыкальных файлов находится на очень высоком уровне. 

РАБОТА ТРИГГЕРА

     Триггер определяется, как бистабильный элемент, то есть логическое устройство с обработанными связями, которое может находиться в одном из двух устойчивых состояний, обеспечиваемых этими связями.

Входами триггера R, T и S служат кнопки SB1 – SB3, нажатием которых подается напряжение высокого уровня. Индикаторами выходов Q и Q– являются лампы HL1 и HL2. При включении питания триггера загорается одна из ламп, например HL2.

Если теперь на вход R подать 1, нажав кнопку SB1, триггер перейдет в другое устойчивое состояние – загорится лампа HL1, а лампа HL2 погаснет.   

Что такое дозиметр

дозиметр — на самом деле очень простой прибор, нам нужен чувствительный элемент, в нашем случае трубка Гейгера, питание для неё, обычно около 400V постоянного тока и индикатор, в простейшем случае это может быть обычный динамик. Когда ионизирующее излучение ударяется о стенку счётчика Гейгера и выбивает из неё электроны, оно заставляет газ в трубке стать проводником, поэтому ток идёт прямо на динамик и заставляет его щелкать, если вам интересно, то в сети можно найти гораздо лучшее объяснение.

Я думаю, все согласятся, что щелки — не самый информативный индикатор, тем не менее, у него есть возможность оповещать об увеличении радиационного фона, но подсчет радиации при помощи секундомера для более точных результатов — штука довольно странная, поэтому я решил добавить устройству немного мозгов. Дозиметр — на самом деле очень простой прибор, нам нужен чувствительный элемент, в нашем случае трубка Гейгера, питание для неё, обычно около 400V постоянного тока и индикатор, в простейшем случае это может быть обычный динамик.

Как сделать счетчик гейгера своими руками.

Когда ионизирующее излучение ударяется о стенку счётчика Гейгера и выбивает из неё электроны, оно заставляет газ в трубке стать проводником, поэтому ток идёт прямо на динамик и заставляет его щелкать, если вам интересно, то в сети можно найти гораздо лучшее объяснение. Щелки — не самый информативный индикатор, тем не менее, у него есть возможность оповещать об увеличении радиационного фона, но подсчет радиации при помощи секундомера для более точных результатов — штука довольно странная, поэтому я решил добавить устройству немного мозгов.

Немного об ионизирующих излучениях

Можно было бы сразу перейти к описанию детектора, но его работа покажется непонятной, если вы мало знаете об ионизирующих излучениях. При излучении происходит эндотермическое влияние на вещество. Этому способствует энергия. К примеру, ультрафиолет или радиоволна к таким излучениям не относятся, а вот жесткий ультрафиолетовый свет – вполне. Здесь определяется граница влияния. Вид именуется фотонным, а сами фотоны – это γ-кванты.

Эрнст Резерфорд поделил процессы испускания энергии на 3 вида, используя установку с магнитным полем:

  • γ – фотон;
  • α – ядро атома гелия;
  • β – электрон с высокой энергией.

От частиц α можно защититься бумажным полотном. β проникают глубже. Способность проникновения γ самая высокая. Нейтроны, о которых ученые узнали позже, являются опасными частицами. Они воздействуют на расстоянии нескольких десятков метров. Имея электрическую нейтральность, они не вступают в реакцию с молекулами разных веществ.

Однако нейтроны легко попадают в центр атома, провоцируют его разрушение, из-за чего образуются радиоактивные изотопы. Распадаясь, изотопы создают ионизирующие излучения. От человека, животного, растения или неорганического предмета, получившего облучение, радиация исходит несколько дней.

Виды счетчика Гейгера

Устройства представлены в двух вариантах:

  • Цилиндрические. Этот вид производится с использованием металлической гофрированной трубки с тонкими стенками. Рифленая поверхность придает гильзе дополнительный показатель жесткости, чтобы она была максимально устойчива к атмосферному давлению и не деформировалась. Торцы трубки оборудуются изоляторами для создания герметичности. Они сделаны из стекла и пластмассы термореактивного вида. На них расположены выводы для подключения плат прибора. Такой счетчик Гейгера-Мюллера применяется для регистрации как бета, так и гамма лучей.
  • Торцевые или плоские. Этот вид устройства регистрирует еще и на альфа излучение, которое отличается меньшей проходимостью частиц. Конструкция корпуса плоская. В нем есть окно из слюды, обеспечивающее лучшую проходимость частиц.

Счетчиками Гейгера можно просто и быстро найти источник ионизированного излучения и внутри помещений, и на открытой местности. Это довольно дешевые, но надежные и эффективные датчики, поэтому широко используются в таких приборах, как дозиметры. С их помощью можно проверить на радиацию:

  • стройматериалы:
  • одежду;
  • технику;
  • мебель;
  • продукты питания.

Возможности счетчиков Гейгера, чувствительность, регистрируемые излучения

С помощью счетчика Гейгера можно зарегистрировать и с высокой точностью измерить гамма- и бета-излучение. К сожалению, нельзя распознать вид излучения напрямую. Это делается косвенным методом с помощью установки преград между сенсором и обследуемым объектом или местностью. Гамма-лучи обладают высокой проницаемостью, и их фон не меняется. Если дозиметр засек бета-излучение, то установка разделительной преграды даже из тонкого листа металла почти полностью перекроет поток бета-частиц.

Примечательная особенность счетчика Гейгера — чувствительность, в десятки и сотни раз превышающая необходимый уровень. Если в совершенно защищенной свинцовой камере включить счетчик, то он покажет огромный естественный радиационный фон. Эти показания не являются дефектом конструкции самого счетчика, что было проверено многочисленными лабораторными исследованиями. Такие данные — следствие естественного радиационного космического фона. Эксперимент только показывает, насколько чувствительным является счетчик Гейгера.

Специально для измерения этого параметра в технических характеристиках указывается значение «чувствительность счетчика имп мкр» (импульсов в микросекунду). Чем больше этих импульсов — тем больше чувствительность.

Измерение радиации счетчиком Гейгера, схема дозиметра

Схему дозиметра можно разделить на два функциональных модуля: высоковольтный блок питания и измерительная схема. Высоковольтный блок питания — аналоговая схема. Измерительный модуль на цифровых дозиметрах всегда цифровой. Это счетчик импульсов, который выводит соответствующее значение в виде цифр на шкалу прибора. Для измерения дозы радиации необходимо подсчитать импульсы за минуту, 10, 15 секунд или другие значения. Микроконтроллер пересчитывает число импульсов в конкретное значение на шкале дозиметра в стандартных единицах измерения радиации. Вот самые распространенные из них:

  • рентген (обычно используется микрорентген);
  • Зиверт (микрозиверт — мЗв);
  • Бэр;
  • Грей, рад,
  • плотность потока в микроваттах/м2.

Сравнение газоразрядного счетчика Гейгера с полупроводниковым датчиком радиации

Счетчик Гейгера является газоразрядным прибором, а современная тенденция микроэлектроники — повсеместное от них избавление. Были разработаны десятки вариантов полупроводниковых сенсоров радиации. Регистрируемый ими уровень радиационного фона значительно выше, чем для счетчиков Гейгера. Чувствительность полупроводникового сенсора хуже, но у него другое преимущество — экономичность. Полупроводникам не требуется высоковольтного питания. Для портативных дозиметров с батарейным питанием они хорошо подходят. Еще одно их преимущество — регистрация альфа-частиц. Газовый объем счетчика существенно больше полупроводникового сенсора, но все равно его габариты приемлемы даже для портативной техники.

Устройство и принцип функционирования

Чтобы понять преимущества и недостатки счетчиков Гейгера, необходимо определить особенности его устройства. Приспособление имеет вид герметической трубки. Она может быть изготовлена из стекла или металла.

Из трубки откачивается воздух, внутрь под давлением закачивается инертный неон или аргон. В составе инертных газов присутствуют галогенные или спиртовые примеси.

Вдоль осевого сечения в трубке натягивается проволока с малым диаметром. В коаксиальной связи с ней предусмотрен цилиндр из металла.

Трубка с проволокой играют роль электродных элементов. Это катод и анод соответственно. К трубке подсоединяется минусовая полярность источника напряжения, а к проволоке-аноду – «плюс» посредством постоянного сопротивления с повышенным значением.

Принцип действия счетчика Гейгера предполагает, что по трубке перемещается ионизирующая частица. В этот период атомы газа сталкиваются с ней. Передаваемая частице энергия влияет на энергетическое поле, что приводит к отрыву электронов от атомов аргона или неона.

Формируются вторичные электроны. Они продуцируют новые столкновения. Электрическое поле способствует ускоренному перемещению электронов к аноду. Газовые ионы с соответствующим зарядом перемещаются в сторону катода. Все это приводит к появлению тока электрического типа.

Заряженная частица, попадая в счетчик Гейгера и приводя к появлению тока, провоцирует снижение сопротивления в трубке, а также изменение параметров напряжения в делителе.

В последующем уровень сопротивления и напряжения приходят к первоначальному состоянию, что вызывает отрицательный импульс. Эти импульсы просчитываются, и определяется количество частиц, прошедших сквозь трубку.