Спустя 20 лет «джеймс уэбб» построен: как он устроен и чем знаменит?

Xrism (Япония)

Сейчас трудятся в космосе три японские космические обсерватории: на борту МКС — MAXI (Monitor of All-sky X-ray Image), на солнечно-синхронной орбите — «Хинодэ» (SOLAR-B) и на эллиптической орбите — «Хисаки» (SPRINT-A). Но скоро к ним присоединится рентгеновская обсерватория «Хитоми-2»(XRISM), создаваемая JAXA совместно с NASA и ESA. Телескоп был собран компанией Mitsubishi Heavy Industries. Главная задача этого аппарата будет состоять в прояснении свойств пространство-временных структур в рамках общей теории относительности, а именно:

  • изучение истории формирования галактических скоплений;
  • разгадка, каким образом во Вселенной формировались химические элементы и как они «скитались» по космосу;
  • наблюдение за движением материи в окрестностях сверх/ультра массивных черных дыр.

На телескопе будет два отражательных зеркала, на фокусные поверхности которых установят калориметрический спектрометр мягкого рентгена Resolve и камеру Xtend, тоже работающую в мягком рентгене. Запуск миссии должен состоятся уже в следующем году.

NIRCam

Камера ближнего инфракрасного диапазона NIRCam – основной блок формирования изображения. Это своего рода «главные глаза» телескопа. Рабочий диапазон камеры – от 0,6 до 5 микрометров. Снимки, сделанные ею, будут впоследствии изучаться другими инструментами. Именно при помощи NIRCam ученые хотят увидеть свет от самых ранних объектов Вселенной на заре их формирования. Кроме этого, за счет инструмента будут изучены молодые звезды нашей Галактики, создана карта темной материи и многое другое. Важная особенность NIRCam – наличие коронографа, позволяющего увидеть планеты вокруг далеких звезд. Это станет возможным благодаря подавлению света последних.

NIRCam 

История телескопа «Джеймс Уэбб»

В то, что телескоп Джеймса Уэбба уже собран, даже сейчас верится с большим трудом. Ведь на его проектирование и строительство у NASA ушло более 20 лет. Идея создания космического телескопа мощнее «Хаббла» возникла еще в далеком 1996 году. До 2002 года проект носил название Next Generation Space Telescope. Только потом был переименован в честь Джеймса Уэбба — второго руководителя агентства NASA, который занимал свою должность с 1961 по 1968 год.

Джеймс Уэбб руководил NASA с начала президентства Кеннеди до конца президентства Джонсона

Изначально запуск телескопа Джеймса Уэбба был запланирован на 2007 год. Но при строительстве огромного аппарата для совершения новых космических открытий возникло очень много проблем. Из-за них и началась череда многочисленных переносов — можно сказать, что они происходили каждый год. И вот наступил 2020 год, когда аппарат уже почти собран и готов к новым открытиям. Но нет — началась пандемия коронавируса, из-за которой страдает не только научное сообщество, и и весь мир в целом.

Готовность телескопа «Джеймс Уэбб»

По данным издания New Atlas, телескоп Джеймса Уэбба наконец-то доказал свою работоспособность и в нем нет никаких неисправностей. Инженеры аккуратно сложили солнцезащитные козырьки, спрятали центральную башню и тем самым подготовили конструкцию к транспортировки в космодром Куру. Известно, что для транспортировки будет использован водный транспорт.

Подготовка телескопа Джеймса Уэбба к отправке на космодром

После того, как телескоп окажется на космодроме, его поместят внутрь обтекателя ракеты-носителя Ariane 5. Предполагается, что запуск исследовательского аппарата будет совершен в октябре 2021 года. Телескоп сможет начать наблюдения только спустя полгода со дня запуска, потому что ему нужно преодолеть более миллиона километров и начать вращение вокруг Солнца. Предполагается, что исследования будут проводиться около 10 лет, но не исключено, что аппарат прослужит гораздо дольше.

Ракета-носитель Ariane 5

Если интересно, на нашем сайте есть статья, в котором мы попытались заглянуть в будущее и узнать, какими будут телескопы после «Джеймса Уэбба». Вот ссылка.

Nancy Grace Roman Telescope (США)

Телескоп Nancy Roman в представлении художника.

Космический телескоп NASA Nancy Grace Roman (или же WFIRST — Wide Field Infrared Survey Telescope, что означает Широкодиапазонная инфракрасная обсервтаория) назван в честь женщины-астронома «матери Хаббла» Нэнси Грейс Роман. Телескоп на данный момент находится на этапе начала сборки и его запуск планируется на 2025 год. Он в 100 раз превосходит возможности «Хаббла» и должен заняться самыми передовыми вопросами в космологии и исследовании экзопланет. Его коронограф сможет находить планеты-сироты, а также производить прямое наблюдения за другими мирами и изучать их атмосферы.

Телескоп RST также должен стать идеологическим наследником и заменой для сразу трех миссий — Хаббла, инфракрасного телескопа WISE и готовящейся к пуску обсерватории «Джеймс Уэбб». RST должна получить первые прямые фотографии экзопланет, раскрыть сущность темной энергии и понять, как распределена материя по Вселенной.

Образование звезд

И здесь в игру вступает инфракрасный. Технология, которая сможет пробить пыльные, плотные покровы облаков, скрывающих ядра, в которых происходит формирование звезд. В видимом спектре их не видно и нет никакой возможности увидеть. Продвинутая система фотографирования и спектроскопии космического телескопа Джеймса Уэбба позволит нам наблюдать звезды по мере их образования в пыльных коконах. Он также будет иметь возможность делать снимки дисков вокруг звезд и изучать органические молекулы, которые способствуют развитию и распространению жизни.

Чтобы проследить истоки Земли и жизни во Вселенной, ученые должны изучить формирование и эволюцию, включая материал вокруг звезд, где формируются планеты. Ключевым вопросом остается понять, как сложились строительные кирпичики жизни на планетах. Ученые не знают, все ли планеты в планетарной системе образовались на месте или же пришли внутрь после формирования во внешних пределах системы.

Орбита «Джеймса Уэбба» и будущее проекта

В статье мы уже упоминали, что телескоп не будет кружить вокруг Земли, как это делает «Хаббл» — он будет отправлен подальше, на орбиту Солнца

Для чувствительных к свету инструментов важно, чтобы ни Луна, ни Земля не возникали в поле зрения телескопа. Одновременно «Джеймс Уэбб» должен постоянно находиться рядом с нашей планетой — это необходимо для эффективного управления и передачи данных

Как это удастся ученым?

Точка Лагранжа-2 (L2) — будущий центр орбиты «Джеймса Уэбба»

Привязать телескоп к планете и одновременно пустить его в свободное плавание удастся благодаря гало-орбите вокруг точки Лангранжа-2 системы Земля-Солнце. Звучит сложно — что же это значит? О точках Лагранжа мы уже не раз упоминали в своих статьях. В любой гравитационной системе, состоящей из двух массивных тел — например, Солнца и Земли — возникает 5 устойчивых точек, в которых маленькое тело, вроде спутника или астероида, может безбоязненно находиться на неизменной орбите. Более того, вокруг этой точки можно построить орбиту и вращаться, как будто она является материальным телом.

Это свойство и собирается использовать «Джеймс Уэбб» — он будет кружить вокруг точки Лагранжа 2, перемещаясь вокруг Солнца синхронно с Землей. Поэтому орбита и называется «гало» (от древнегреческого «halos» — диск, нимб). Только форма ее будет далека от идеального круга — она будет сильно вытянутой и больше напоминать эллипс. На это есть свои причины: к примеру, телескоп сможет периодически подходить к ближе к Земле и быстрее передавать данные. А еще так попросту легче — на округление орбиты пришлось бы потратить много топлива, что усложнит конструкцию ракеты, уменьшая тем самым полезную нагрузку телескопа.

Ракета «Ариан-5» на стартовом столе

На создателях «Джеймса Уэбба» лежит огромная ответственность. С тех пор как в 2018 году ракета «Ариан-5» выведет телескоп на орбиту, его нельзя будет улучшить, отремонтировать или изменить — сейчас не существует активных технологий, которые могли бы доставить к нему ремонтную бригаду. Со знаменитым «Хабблом» это случалось не раз. У него то отказывали важные элементы, то надо было доставить новое оборудование, а то случались форс-мажоры — как-то раз аномалия магнитного поля Земли заставляла телескоп регулярно выключаться.

Большинство ремонтных работ производили астронавты на шаттлах — но шаттлы больше не используются, а «Джеймс Уэбб» будет находиться в разы дальше «Хаббла». Конечно, новый телескоп будет защищен от многих известных неприятностей. Но никто не гарантирует появление новых, еще не познанных в космонавтике. Поэтому сейчас сборка «Уэбба» продвигается крайне медленно — каждая деталь и комплекс проходит серию стресс-тестов, дабы отсечь любой неприятный сюрприз в будущем.

Телескоп Lynx

Основная конструкция.

Следующим телескопом идет Lynx – рентгеновский телескоп NASA нового поколения. На удивление название аппарата не является акронимом. Он назван в честь представителя семейства кошачьих – рыси (с английского «lynx»). В многочисленных культурах рыси считаются животными, обладающими сверхъестественной способностью видеть истинную природу вещей.

Рентгеновские лучи находятся на дальнем конце электромагнитного спектра (расположены между ультрафиолетовым излучением и гамма-излучением) и блокируются земной атмосферой. Поэтому для того чтобы их увидеть, необходим телескоп, находящийся в космосе. На данный момент флагманским рентгеновским телескопом является Космическая рентгеновская обсерватория «Чандра» NASA. Европейской космическое агентство собирается запустить в 2028 году свой рентгеновский телескоп ATHENA.

Концепт рентгеновского телескопа Lynx

Планируется, что Lynx будет работать в качестве партнера телескопу «Джеймс Уэбб», всматриваясь в края наблюдаемой Вселенной, раскрывая тайны появления первых сверхмассивных черных дыр и помогая составлять картину природы их формирования и слияния с течением времени. Он также сможет наблюдать за излучением, идущим от горячего газа ранней космической паутины, собирая данные о том, как формировались самые первые звезды и галактики.

После этого Lynx планируется использовать для исследования объектов, которыми до него занимались «Чандра», XMM Newton и другие рентгеновские телескопы: пульсаров, коллапсаров, сверхновых, черных дыр и многого другого. Даже обычные звезды могут создавать вспышки рентгеновского излучения, а значит и они станут объектами исследования.

Основная часть материи Вселенной сосредоточена в облаках газа, разогретого до миллиона градусов Кельвина. И если мы хотим увидеть Вселенную такую, какая она есть на самом деле, нам необходимо вести наблюдение в рентгеновском диапазоне волн.

Рентгеновские телескопы отличаются от космических обсерваторий, таких как «Хаббл», работающих в видимом диапазоне волн. Здесь не получится использовать обычное зеркало, в которое будут ударяться рентгеновские лучи. Вместо этого для фокусировки лучей необходимо использовать зеркала скользящего падения, позволяющие перенаправлять попадающие в них фотоны в детектор.

Художественное представление Космической рентгеновской обсерватории «Чандра». На данный момент это самый чувствительный рентгеновский телескоп

Благодаря использованию трехметровому наружному зеркалу Lynx будет в 50-100 раз чувствительнее, получит в 16 раз больший угол обзора и сможет улавливать фотоны в 800 раз быстрее «Чандры».

Euclid (Европа)

Европейский космический телескоп «Евклид»(Euclid), который был создан в результате слияния трех проектов (DUNE, the Dark Universe Explorer и SPACE) , получивший свое название в честь древнегреческого математика, является частью программы Cosmic Vision Европейского космического агенства. Телескоп будет выполнять свою миссию на протяжении шести лет с возможностью продления еще на 5 лет, в течение которых он изучит природу темной материи и темной энергии.

Используя телескоп размером 1,2м видимого спектра и инфракрасного, Евклид будет обрисовывать форму, яркость и 3D-распределение двух миллиардов галактик, занимающих более одной трети неба. Он измерит геометрию и скорость роста вселенной в самом высоком разрешении из когда-либо ранее доступных, задействовав гравитационное линзирование, космологическое смещение и наблюдения за скоплениями галактик.

Собрав воедино все эти сверхточные измерения, мы должны получить лучшее объяснение того, как ускорение Вселенной изменяется на протяжении времени, находя всё новые и новые подсказки о происхождении, эволюции и конечной судьбе космоса, а также о роли темной материи и темной энергии в каждом из этих процессов, в корне изменяя наше понимание этих все еще не изученных до конца явлений.

Запуск телескопа к точке Лагранжа L2планируется не ранее июля и не позднее декабря 2022 года.

Наследие

Уэбба сыграл Дэн Лаурия в мини-сериале 1998 года « С Земли на Луну» .

Уэбба сыграл Кен Странк в фильме 2016 года « Скрытые фигуры» .

Запланированный НАСА космический телескоп Джеймса Уэбба , первоначально известный как космический телескоп следующего поколения, был переименован в честь Уэбба в 2002 году. Этот телескоп, который будет запущен в 2021 году, описывается как преемник космического телескопа Хаббла . В марте 2021 года журнал Scientific American призвал НАСА переименовать телескоп в комментарии , указав, что Уэбб был замешан в чистке Госдепартаментом ЛГБТ из федеральной рабочей силы . В июле 2021 года соответствующая статья о переименовании телескопа появилась в журнале Nature .

Миссия: стоя на плечах гигантов

Хаббл, который размером с автобус, видит в первую очередь видимую область спектра и немного ультрафиолетового и инфракрасного. Его программа началась в 1990 году и благодаря дальнейшему обслуживаю продлится достаточно долго, чтобы передать эстафету Уэббу. Названный в честь Эдвина Хаббла, астронома, открывшего множество задач для изучения этим телескопом, он стал одним из самых продуктивных инструментов в научной истории, подарив нам феномены вроде рождения звезды и ее смерти, эволюции галактики и черных дыр (от теории до наблюдаемых фактов).

Вместе с Хабблом в большую четверку входит Комптоновская гамма-лучевая обсерватория (CGRO), Рентгеновская обсерватория «Чандра» и космический телескоп Спитцер.

CGRO, запущенная в 1991 и больше не обслуживаемая, обнаружила высокоэнергетические жестокие явления от 30 килоэлектрон-вольт (кэВ) до 30 гигаэлектрон-вольт (ГэВ), включая энергетические извержения ядер активных галактик.

«Чандра», запущенная в 1999 году и до сих пор остающаяся на плаву, наблюдает за черными дырами, квазарами и высокотемпературными газами в рентгеновском спектре, а также предоставляет важные данные о рождении, росте и конечной судьбе Вселенной.

Спитцер, который оккупировал орбиту прохождения Земли, изучает небо в тепловом инфракрасном (3-180 микрон) диапазоне, наблюдая за рождением звезд, галактическими центрами и холодными тусклыми звездами. Также он ищет те или иные молекулы в космосе.

Уэбб будет вглядываться в ближний и средний инфракрасный спектр, чему поспособствует его положение в точке L2 за луной и солнечные щиты, которые блокируют навязчивый свет Солнца, Земли и Луны, благоприятно влияя на охлаждение аппарата. Ученые надеются увидеть самые первые звезды Вселенной, образование и столкновение юных галактик, рождение звезд в протопланетарных системах — в которых, возможно, содержатся химические компоненты жизни.

Эти первые звезды могут хранить ключ к пониманию структуры Вселенной. Теоретически, где и как они формируются, напрямую связано с первыми моделями темной материи — невидимой таинственной субстации, которую обнаруживают по гравитационному воздействию — а их циклы жизни и смерти вызывают обратную связь, повлиявшую на формирование первых галактик. И поскольку сверхмассивные звезды с коротким периодом жизни примерно в 30-300 раз тяжелее нашего Солнца по массе (и в миллионы раз ярче), эти первые звезды могли бы взорваться в виде сверхновых, а после коллапсировать и образовать черные дыры, которые постепенно заняли центры большинства массивных галактик.

Видеть все это — безусловно, подвиг для инструментов, которые мы делали до сих пор. Благодаря новым инструментам, а также космическим аппаратам, мы сможем увидеть еще больше.

Ранние годы

Уэбб родился в 1906 году в деревне Талли Хо в графстве Гранвилл, Северная Каролина . Его отец был суперинтендантом государственных школ округа Гранвилл. Он закончил колледж в Университете Северной Каролины в Чапел-Хилл , где в 1928 году получил степень бакалавра педагогических наук . Он был членом братства Акация . Уэбб стал в Корпусе морской пехоты США , и он служил пилотом морской пехоты на действительной военной службе с 1930 до 1932 года Уэбб затем изучал право в The George Washington University Law School , где он получил JD степень в 1936 году В тот же самый год, он был принят в бар в округе Колумбия .

Как устроен «Джеймс Уэбб»?

«Уэбб» выглядит как ромбовидный плот, оснащенный толстой изогнутой мачтой и парусом — если бы его строили гигантские пчелы, питающиеся бериллием.

Направленный нижней частью к Солнцу, снизу «плот» состоит из щита — слоев каптона, разделенных щелями. Каждый слой разделен вакуумной щелью для эффективного охлаждения, а вместе они защищают основной отражатель и инструменты.

Если вы захотите, вы сможете вскипятить воду на одной стороне щита и сохранить азот в жидком состоянии на другой

Складывается он тоже довольно хорошо, что важно для запуска

Судовой «киль» состоит из структуры, которая хранит солнечный щит во время запуска и солнечные батареи для обеспечения питания аппарата. В центре находится короб, который содержит все важные функции поддержки, за счет которых работает «Уэбб», включая электроэнергию, управление ориентацией, связь, командование, обработку данных и тепловой контроль. Антенна украшает внешний вид короба и помогает убедиться, что все ориентировано в нужном направлении. На одном из концов теплового щита, перпендикулярно к нему, находится триммер момента, который компенсирует давление, оказываемое фотонами на аппарат.

На космической стороне щита находится «парус», гигантское зеркало Уэбба, часть оптического оснащения и короб с оборудованием. 18 шестиугольных бериллиевых секций развернутся после запуска, чтобы стать одним большим главным зеркалом на 6,5 метра в поперечнике.

Напротив этого зеркала, удерживаемого на месте тремя опорами, находится вторичное зеркало, которое фокусирует свет от главного зеркала в кормовой оптической подсистеме, клиновидной коробке, выступающей из центра основного зеркала. Эта структура отклоняет рассеянный свет и направляет свет от вторичного зеркала к инструментам, размещенным в задней части «мачты», которая также поддерживает сегментированную структуру основного зеркала.

После того как аппарат завершит свой шестимесячный период ввода в эксплуатацию, он проработает 5-10 лет, а может, и больше, в зависимости от расхода топлива, однако его местоположение будет слишком далеко, чтобы его можно было починить. На самом деле, «Хаббл» и Международная космическая станция являются своего рода исключениями в этом плане. Но, как у «Хаббла» и других общих обсерваторий, миссией «Уэбба» будет работа с проектами ученых всего мира, отбираемых на конкурсной основе. Затем результаты будут находить свой путь в исследованиях и данных, доступных в Интернете.

Оптический телескоп «Сюньтянь»

Телескоп Китайской космической станции (CSST) «Сюньтянь» или «Небесный часовой» — автономный орбитальный модуль с оптическим телескопом.

Запуск «Сюньтянь» запланирован на 2024 год. Телескоп будет вращаться вокруг Земли по той же орбите, что и китайская модульная станция. Он сможет периодически приближаться и стыковаться с ней, чтобы экипаж проводил необходимый ремонт и менял приборы.

Телескоп «Сюньтянь»

(Фото: CSNA)

Огромная линза делает «Небесного часового» сопоставимым с «Хабблом». При этом обзор китайского телескопа будет в 300 раз больше при таком же высоком разрешении. Благодаря широкому полю зрения он сможет наблюдать до 40% пространства в течение десяти лет.

Телескоп Китайской космической станции будет вести наблюдение в ближнем ультрафиолетовом и видимом свете, а также исследовать свойства темной материи, формирование и эволюцию галактик.

Космический телескоп «Хаббл»

Телескоп «Хаббл», названный в честь Эдвина Хаббла, был запущен на орбиту 24 апреля 1990 года. Это совместный проект NASA и Европейского космического агентства, задуманный как обсерватория общего назначения для исследования Вселенной в видимом, ультрафиолетовом и инфракрасном диапазонах волн. Входит в число NASA.

Телескоп «Хаббл»

(Фото: NASA)

20 мая 1990 года телескоп сделал первую фотографию звездного скопления NGC 3532.

Слева — снимок, сделанный из обсерватории Лас Кампанас, Чили. Справа — часть первого изображения «Хаббла»

(Фото: NASA, ESA, and STScI)

«Хаббл» вращается вокруг Земли на высоте около 540 км и наклонен на 28,5 градусов к экватору. Чтобы совершить один оборот, ему требуется 95 минут.

Орбитальный телескоп провел более 1 млн наблюдений и предоставил данные, которые астрономы использовали, чтобы написать свыше 18 тыс. рецензируемых научных публикаций (от формирования планет до гигантских черных дыр). Эти документы упоминались в других публикациях более 900 тыс. раз.

Чем известен «Хаббл»

  • Благодаря изучению пульсирующих звезд удалось определить возраст нашей Вселенной — 13,8 млрд лет.
  • В январе 1992 года астрономы подтвердили существование планет за пределами солнечной системы.
  • Телескоп зафиксировал редкое явление — столкновение кометы Шумейкера-Леви 9 с Юпитером в 1994 году. Это первые в истории фотографии столкновения двух объектов Солнечной системы.

Серия снимков, сделанных с помощью космического телескопа «Хаббл» NASA, показывает эволюцию области падения кометы Шумейкера-Леви

(Фото: H. Hammel, MIT and NASA)

  • Телескоп детально зафиксировал эволюцию погоды Юпитера, в том числе редкий шторм возле экватора планеты.
  • «Хаббл» показал Плутон впервые с момента открытия планеты в 1930 году.
  • Аппарат сфотографировал шлейф газа и пыли высотой 400 км в результате извержения вулкана Ио, самой большой внутренней луны Юпитера.

Изображения сделаны 14 февраля 2007 года. На левом видны оранжевые овальные отложения серы вокруг вулкана Пеле. На правом изображении виден большой шлейф, поднимающийся над поверхностью, недалеко от северного полюса

(Фото: NASA, ESA, and J. Spencer (SwRI))

  • Подтвердил предположения о наличии сверхмассивных черных дыр в ядрах Галактик.
  • Нашел самый далекий из известных на сегодня космических объектов — галактику GN-z11. Сейчас мы видим ее такой, какой она была 13,4 млрд лет назад.

Галактика GN-z11, показанная на вставке, видна в прошлом на 13,4 млрд лет, всего через 400 млн лет после Большого взрыва, когда возраст Вселенной составлял всего 3% от ее нынешнего возраста. Учитывая расширение Вселенной, сейчас на деле она находится в 32 млрд световых лет от нас

(Фото: NASA, ESA, P. Oesch (Yale University))

  • Подтвердил существование на спутнике Юпитера Ганимеде огромного подземного океана под 150-километровой толщей льда. На основании этого открытия астрономы внесли крупнейший спутник в Солнечной системе в список возможных кандидатов на поиск жизненных форм.
  • Обнаружил водяной пар на экзопланете K2-18b из обитаемой зоны, а также первую подтвержденную межзвездную комету 2I/Borisov.

13 июня 2021 года компьютер, отвечающий за научное оборудование «Хаббла», перестал реагировать на команды с Земли. Устранить поломку инженерно-научной группе, обслуживающей телескоп, удалось только к 16 июля 2021 года.

У орбитального «Хаббла» есть два аккаунта в Twitter — Hubble NASA и Hubble ESA, два официальных YouTube канала — NASA и ESA, а также аккаунты в Instagram и .

Посвященный «Хабблу» ролик NASA

Изображения и данные, полученные с космического телескопа «Хаббл», показывают галактики такими, какими они были миллиарды лет назад.

NIRSpec

При помощи спектрографа ближнего инфракрасного диапазона можно будет собирать информацию, касающуюся как физических свойств объектов, так и их химического состава. Спектрография занимает очень много времени, однако при помощи технологии микрозатворов можно будет проводить наблюдения за сотней объектов на площади неба 3×3 угловых минуты. Каждая ячейка микрозатворов NIRSpec имеет крышку, которая открывается и закрывается под влиянием магнитного поля. Ячейка имеет индивидуальное управление: в зависимости от того, закрыта она или открыта, информация об исследуемый части неба предоставляется или же, наоборот, блокируется.

NIRSpec 

Особенности телескопа Джеймса Уэбба

Телескоп Джеймса Уэбба практически с самого начала позиционировался как замена «Хаббла», который был запущен в 1990 году и работает до сих пор. Изначально новый исследовательский аппарат назывался «Космический телескоп нового поколения», но потом получил название «Джеймс Уэбб». В его создании участвовали инженеры из 17 стран, но в целом весь процесс контролировался сотрудниками NASA. В 2017 году ученые объявили, что первым делом телескоп проведет как минимум 2100 наблюдений, результаты которых на данный момент особенно нужны научному сообществу. У телескопа очень серьезные задачи, но первым делом он изучит близкие объекты вроде планет Солнечной системы, экзопланет и ближайших галактик. Дальше исследования будут все более интересными.

Телескоп Джеймса Уэбба больше и мощнее, чем «Хаббл»

Приборы, установленные на телескоп Джеймса Уэбба, позволят ученым посмотреть в глубины космоса гораздо дальше, чем «Хаббл». Самой большой частью телескопа является противосолнечный щит, длина которого составляет 20 метров, а ширина равна 7 метрам. Он покрыт пленкой из тонкого слоя алюминия с одной стороны и металлическим кремнием с другой. Пространство между слоями теплового щита заполнено вакуумом, потому что так теплопроводность аппарата снижается до максимальных значений. Все это нужно для того, чтобы сверхчувствительных матрицы телескопа охлаждались до –220 градусов Цельсия. Если бы не этот щит, аппарат бы был «ослеплен» солнечным свечением и о разглядывании глубин космоса можно было бы и не мечтать.

Сравнение зеркала «Хаббла» и «Джеймса Уэбба»

Влияние коронавируса на науку

Об очередном переносе даты запуска телескопа «Джеймс Уэбб» было рассказано на официальном сайте NASA. Это не стало для любителей космоса неожиданностью, потому что дата запуска уже менялась столько раз, что все мы уже сбились со счета. Впервые о намерении отменить весенний запуск телескопа в начале июня сообщил Томас Цурбухен (Thomas Zurbuchen), руководитель научного подразделения NASA. Причиной, как и в большинстве мировых проблем, стала пандемия коронавируса. Сотрудникам агентства необходимо убедиться в работоспособности телескопа, а карантин замедлил процесс проверки.

Зеркало телескопа «Джеймс Уэбб»

Обратите внимание — пандемия коронавируса только замедлила работу над новым телескопом, а не полностью ее остановила. По словам Томаса Цурбухена, в последнее время работа продвигалась очень даже хорошо

Даже в конце марта 2020 года, когда нашумевший вирус уже начал распространяться по всему миру, инженеры NASA смогли успешно развернуть главное зеркало телескопа — это стало своего рода демонстрацией результата трудов, которые были вложены в разработку космического устройства.

А вот и сам момент разворачивания зеркала