Про планеты солнечной системы по порядку от cолнца

4.1.2. Вращение Солнечной системы window.top.document.title = «4.1.2. Вращение Солнечной системы»;

Все планеты, астероиды, кометы вращаются вокруг Солнца в одном направлении (против хода часовой стрелки, если смотреть с северного полюса мира). Орбиты планет практически круговые, их плоскости мало наклонены к плоскости орбиты Земли. Только две планеты – Меркурий и Плутон – имеют орбиты с большим наклоном к эклиптике.

Модель 4.1.
Солнечная система

Орбиты же комет вытянутые, имеют большой эксцентриситет. Большинство объектов Солнечной системы вращаются вокруг своей оси в одном направлении, которое называется прямым. Однако Венера вращается в обратном направлении, а Уран вращается, как говорят, «лежа на боку».

Почти все спутники обращаются вокруг планеты в том же направлении, что и планеты вокруг Солнца. Исключение составляют спутники Юпитера, чьи названия заканчиваются на «е» – Карме, Синопе, Ананке, Пасифе, и спутник Нептуна Тритон. По-видимому, все они образовывались не вместе со своими планетами, а были захвачены ими позже.

Дни и годы на каждой из планет различны по своей продолжительности. Все планеты вращаются вокруг Солнца с разными скоростями. Самая большая скорость у Меркурия, медленнее всего вокруг Солнца вращается планета Плутон со своим спутником Хароном.

Рисунок 4.1.2.1.Наклон осей вращения планет к плоскостям их орбит

От угла наклона экватора планеты к плоскости орбиты и от вытянутости орбиты планеты зависит смена времен года на планете. Наклон оси вращения планеты – это угол между осью вращения планеты и перпендикуляром к плоскости ее орбиты, или, другими словами, угол между плоскостью экватора планеты и плоскостью орбиты. Ось вращения Земли отклонена от перпендикуляра к плоскости ее орбиты на угол, равный примерно 23,5°. Если бы не было этого наклона, смены времен года на Земле не существовало бы. Регулярная смена времен года – следствие движения Земли вокруг Солнца и наклона оси вращения Земли к плоскости орбиты. Аналогичная смена времен года происходит на Марсе.

Самые длинные сутки на Венере, они продолжаются 243 земных суток. Планеты-гиганты вращаются вокруг своей оси очень быстро. Продолжительность суток на Юпитере всего 9,92 часа.

Рисунок 4.1.2.2.Большие полуоси орбит планет хорошо следуют правилу Тициуса–Боде. Красным выделен теоретический график, синим – реальные размеры орбит

Одним из важнейших факторов, влияющих на климат планет, является солнечное излучение, падающее на планету. Солнечное излучение, падающее на планету, частично отражается в космическое пространство, частично поглощается. Поглощенная энергия нагревает поверхность планеты. Исключительно важным фактором, влияющим на климат планет, является наличие или отсутствие атмосферы. Атмосфера планеты влияет на тепловой режим планеты. Плотная атмосфера планеты влияет на климат несколькими путями:

  • парниковый эффект увеличивает температуру поверхности;
  • атмосфера сглаживает суточные колебания температуры;
  • движение воздушных масс (циркуляция атмосферы) сглаживает разность температур между экватором и полюсом.

В 1766 году Иоганном Тициусом, а в 1772 году независимо от него Иоганном Боде, была подмечена закономерность в ряде чисел, выражающих средние расстояния планет от Солнца, так называемое правило Тициуса – Боде:

где n = 1 для Меркурия, 2 для Венеры, 3 для Земли и так далее. В полученном ряду цифр место для пятой планеты отсутствовало. В 1781 году был открыт Уран. Формула для него предсказывала 19,6 а. е. Действительное значение среднего расстояния составило 19,19 а. е. Таким образом, правило давало практически правильные результаты для больших полуосей орбит.

Проявления ретроградности

Проградное и ретроградное движение планет

Ретроградность может проявляться как в движении планет, так и в движении других объектов планетных систем: спутников, астероидов, комет или звезд в кратных системах. Теоретически возможно существование и ретроградных колец. Кроме того, у многих небесных тел наблюдается ретроградное вращение вокруг своей оси. По современным теоретическим представлениям ретроградное движение или вращение вызвано либо катастрофическими столкновениями, либо гравитационным захватом. Особенно велика доля ретроградных орбит в последнем случае: теоретические моделирования показывают, что при гравитационном захвате наиболее вероятной финальной орбитой является орбита с ретроградным движением. Иногда ретроградность отмечают при наблюдениях движения планет Солнечной Системы на земном небе: во время “петлеобразного“ движения планеты Солнечной Системы могут двигаться, как в прямом, так и в обратном направлении.

Кроме того, возможны запуски искусственных спутников на ретроградные орбиты. Единственной страной, которая осуществляет запуски в ретроградном направлении (обратном вращению Земли) является Израиль. Это происходит по причине того, что Израиль отличается напряженными отношениями со своими соседями. В связи с этим запуски израильских ракет космического назначения происходят в западном направлении, над нейтральными водами Средиземного моря. В 1988-2016 годы Израиль произвел 10 подобных запусков в космос, 8 из них закончились успехом. В этих случаях спутники были выведены на орбиты с наклонением около 140 градусов. В дополнение часто встречаются полярные орбиты искусственных спутников дистанционного зондирования Земли (ДЗЗ), у которых наклонения орбит незначительно превышают 90 градусов. У одной из самых часто используемых полярных орбит – солнечно-синхронной орбиты наклонение составляет 98 градусов. Отличительной чертой солнечно-синхронной орбиты является то, что для искусственного спутника на такой орбите не наблюдается теневых участков орбиты.

Первые примеры ретроградного движения небесных объектов Солнечной Системы были отмечены ещё в древнейшие времена. Так для известной кометы Галлея наклонение орбиты составляет 162 градуса, и наблюдения этой кометы отмечены задолго до нашей эры. Первое открытие ретроградного вращения произошло в конце 18 века (система планеты Уран). В середине 19 века был обнаружен первый пример спутника с ретроградной орбитой (Тритон – спутник Нептуна). В 2009 году было опубликовано открытие первой ретроградной планеты (транзитного горячего юпитера HAT-P-7b).

Планетарный год

Сидерический период вращения (планетарный год) — это время, за которое планета делает один оборот вокруг своей звезды. Скорость движения планеты меняется в зависимости от того в какой точке она находится, чем ближе к звезде тем скорость больше, чем дальше от звезды тем соответственно медленнее движется планета. Поэтому длинна планетарного года, напрямую зависит от расстояния, на котором располагается планета относительно своего «Солнца». Если расстояние небольшое, то планетарный год относительно короткий. Так как чем дальше планета находится от звезды, тем меньше на ее оказывает влияние гравитация, а значит, движение становится медленнее и год соответственно длиннее.

Второй закон Кеплера

Если орбита – это эллипс,
то каким образом происходит движение небесного тела по ней? В каких отрезках
орбитального пути оно ускоряется и замедляется?

Немецкий ученый обнаружил, что есть взять два любых отрезка орбитального пути, которые планета Солнечной системы проходит за одинаковые промежутки времени, провести от их концов радиус-векторы к центральной звезде, то площади полученных образований будут одинаковы.  Это упрощенная формулировка второго закона.

Для того, чтобы
постоянство площадей сохранялось, тело должна двигаться в разных точках орбиты
с разной скоростью. Так, например, Земля в наибольшем приближении к Солнцу
движется быстрее, чем в максимальном удалении от него

Температура на Венере зимой и летом

Лето и зима на Венере – явления номинальные. Вне зависимости от времени года и места вашего пребывания на поверхности, температура на Венере останется одной и той же. Может быть ночью жара немного спадает? Как бы не так – и днем и ночью температура на Венере также не меняется и держится на одних и тех же значениях.

Почему так происходит? В основном в этом замешаны три причины:

  • Во-первых, Венера крайне медлительная: планете требуется 243 земных дня, чтобы один раз повернуться вокруг своей оси (при этом она вращается в обратном направлении, то есть солнце здесь восходит на западе и заходит на востоке).
  • Во-вторых, Венера имеет очень небольшой наклон по оси, он составляет всего 3,39 градуса по сравнению с 23,4 градусами на Земле.

На нашей планете именно наклон оси обеспечивает смену времен года: полушарие, “наклоненное” ближе к солнцу, получает больше тепла и там наступает лето, “дальнее” полушарие получает тепла меньше и там наступает зима.

Отсутствие же наклона оси планеты означает, что даже если бы Венера каким-то чудом вдруг избавилась от своей “горячей” атмосферы, вне зависимости от сезона, вся поверхность обращенной к Солнцу стороны планеты была бы прогрета равномерно и имела бы стабильную температуру круглый год и на экваторе и на полюсах.

В-третьих, все те же знаменитые облака Венеры не дают теплу улетучиваться в космос даже с теневой стороны планеты. “Одеяло” Венеры надежно работает и ночью.

Александр Фролов, для сайта starcatalog.ru

Фактор, отвечающий за смену времен года

Земля со спутника Электро-Л

Угол между базовой плоскостью и плоскостью орбиты носит название наклонение орбиты. Базовой плоскостью в Солнечной системе считается плоскость Земной орбиты, которая имеет название эклиптика. В Солнечной системе располагаются восемь планет и их орбиты очень близки к плоскости эклиптики.

Все планеты Солнечной системы располагаются под углом к плоскости экватора относительно звезды. К примеру, угол наклона Земной оси равен примерно 23 градуса. Этот фактор влияет на то, какое количество света получает Северное или Южное полушарие планеты, а также отвечает за смену времен года.

Смена дня и ночи снятая спутником Электро-Л

Планеты Солнечной системы
Карликовые планеты Плутон· Церера· Хаумеа· Макемаке· Эрида
Планеты Земной группы Меркурий· Венера· Земля· Марс
Газовые гиганты Юпитер· Сатурн· Уран· Нептун

Архивы

АрхивыВыберите месяц Апрель 2021 Август 2019 Июль 2019 Февраль 2019 Январь 2019 Декабрь 2018 Ноябрь 2018 Сентябрь 2018 Август 2018 Июль 2018 Июнь 2018 Май 2018 Апрель 2018 Март 2018 Февраль 2018 Декабрь 2017 Октябрь 2017 Сентябрь 2017 Август 2017 Июль 2017 Июнь 2017 Апрель 2017 Март 2017 Январь 2017 Декабрь 2016 Ноябрь 2016 Октябрь 2016 Сентябрь 2016 Август 2016 Июль 2016 Март 2016 Февраль 2016 Январь 2016 Декабрь 2015 Ноябрь 2015 Октябрь 2015 Август 2015 Июль 2015 Июнь 2015 Май 2015 Апрель 2015 Март 2015 Январь 2015 Декабрь 2014 Ноябрь 2014 Октябрь 2014 Сентябрь 2014 Август 2014 Июль 2014 Июнь 2014 Май 2014 Апрель 2014 Март 2014 Февраль 2014 Январь 2014 Декабрь 2013 Ноябрь 2013 Октябрь 2013 Август 2013 Май 2013 Апрель 2013 Март 2013 Февраль 2013 Январь 2013 Декабрь 2012 Ноябрь 2012 Октябрь 2012 Сентябрь 2012

Формирование небесных систем

Когда галактики или через планетарные системы формы , его материал принимает форму диска. Большая часть материала движется по орбите и вращается в одном направлении. Эта равномерность движения обусловлена ​​схлопыванием газового облака. Природа коллапса объясняется сохранением момента количества движения . В 2010 году открытие нескольких горячих юпитеров с обратными орбитами поставило под сомнение теории о формировании планетных систем. Это можно объяснить, отметив, что звезды и их планеты образуются не изолированно, а в звездных скоплениях , содержащих молекулярные облака . Когда протопланетный диск сталкивается с облаком или крадет материал из него, это может привести к ретроградному движению диска и соответствующих планет.

Движение Земли

Сквозь бескрайние просторы Вселенной, среди бесчисленного множества звезд мчится планета, которую мы называем своим домом, — Земля. Нам она кажется необъятным миром, но это лишь иллюзия. В суматохе дней мы редко всматриваемся в небо и не осознаем, что в необозримой пустоте космоса наша планета не более чем песчинка, на которой возникло чудо жизни.

Земля — космическое тело, а мы — космонавты, совершающие длительный полет вокруг Солнца и бороздящие, не думая о том, просторы Вселенной. На протяжении веков люди пытались выяснить, что из себя представляет этот «космический корабль», пассажирами которого они стали. Какой он формы, с какой скоростью мчится? Благодаря человеческому любопытству, упорству исследователей, а затем и научно-техническому прогрессу сегодня почти на все вопросы о Земле у нас есть точные ответы.

Земля, как и другие планеты солнечной системы, находится в постоянном движении. Движение — это жизнь. Данное утверждение справедливо не только для человека, но и для нашей планеты. Каждую секунду мы перемещаемся в космическом пространстве со скоростью около 30 км/с, совершая не одно, а несколько типов движения.

Два основных типа движения Земли и их следствия: а) осевое вращение; б) орбитальное вращение.

Осевое вращение

Первое и наиболее ощутимое для нас — движение Земли вокруг своей оси. День сменяет ночь, а ночь сменяет день, обеспечивая бесконечное течение времени. Наверное, каждый человек хотя бы раз в жизни хотел, чтобы в сутках было больше чем 24 ч, ведь их не всегда хватает на запланированные дела. Оказывается, времени и того меньше! Полный оборот вокруг своей оси Земля совершает за 23 ч 56 мин 4,1 с.

Земля вращается вокруг своей оси с запада на восток

Движение Земли вокруг своей оси во многом напоминает запущенный волчок, ось которого при постепенном замедлении начинает описывать в пространстве конусы. Перемещаясь в космическом пространстве, подобные действия совершает и земная ось, что с течением времени неизбежно приводит к изменению координат светил на звездном небе. Полный цикл земной прецессии составляет около 25 800 лет.

Орбитальное вращение

Второй тип движения — вращение вокруг Солнца. Его наша планета совершает не по строго круговой орбите, а по слегка вытянутой в форме эллипса. Самая близкая к нашему светилу точка земного пути называется перигелием, а самая дальняя — афелием. В афелии мы находимся в июле, а в перигелии — в январе. Земля парит в пространстве не строго перпендикулярно своей орбите, а под наклоном, равным 23,5°. Наклон земной оси и орбитальное вращение обеспечивают неравномерный нагрев поверхности планеты в течение года, из-за чего происходит смена времен года.

Если рассматривать движения Земли в космических масштабах, то можно заметить, что в этих периодах нет круглых чисел, к которым мы привыкли. Например, звездный год — точное время оборота Земли вокруг Солнца — составляет 365 сут. и 6 ч. Лишние шесть часов мы отбрасываем в течение трех лет. Впоследствии они накапливаются и добавляются к каждому четвертому году, который называется високосным.

Схема движения Земли вокруг Солнца

Знакомство с Солнечной системой

Солнечная система является частью спиралевидной галактики — Млечного пути. В самом ее центре находится Солнце – самый большой обитатель Солнечной системы. Солнце – это горячая звезда, состоящая из газов – водорода и гелия. Оно производит огромное количество тепла и энергии, без которых жизнь на нашей планете была бы просто невозможна. Солнечная система возникла пять млрд. лет назад в результате сжатия газопылевого облака.

Млечный путь

Центральное тело нашей планетной системы — Солнце (по астрономической классификации — желтый карлик), сосредоточило в себе 99,866% всей массы Солнечной системы. Оставшиеся 0,134% вещества представлены девятью большими планетами и несколькими десятками их спутников (в настоящее время их открыто более 100), малыми планетами — астероидами (примерно 100 тысяч), кометами (около 1011 объектов), огромным количеством мелких фрагментов — метеороидов и космической пылью. Все эти объекты объединены в общую систему мощной силой притяжения превосходящей массы Солнца.

Планеты земной группы составляют внутреннюю часть Солнечной системы. Планеты-гиганты образуют ее внешнюю часть. Промежуточное положение занимает пояс астероидов, в котором сосредоточена большая часть малых планет.

Фундаментальной особенностью строения Солнечной системы является то, что все планеты обращаются вокруг Солнца в одном направлении, совпадающем с направлением осевого вращения Солнца, и в том же направлении они обращаются вокруг своей оси. Исключение составляют Венера, Уран и Плутон, осевое вращение которых противоположно солнечному. Существует корреляция между массой планеты и скоростью осевого вращения. В качестве примеров достаточно упомянуть Меркурий, сутки которого составляют около 59 земных суток, и Юпитер, который успевает сделать полный оборот вокруг своей оси менее, чем за 10 часов.

Планеты солнечной системы

Сколько существует планет?

Планеты и их спутники:

  1. Меркурий,
  2. Венера,
  3. Земля (спутник Луна),
  4. Марс (спутники Фобос и Деймос),
  5. Юпитер (63 спутника),
  6. Сатурн (49 спутника и кольца),
  7. Уран (27 спутника),
  8. Нептун (13 спутников).
  • Астероиды,
  • Объекты пояса Койпера (Квавар и Иксион),
  • Карликовые планеты (Церера, Плутон, Эрида),
  • Объекты облака Орта (Седна, Оркус),
  • Кометы (комета Галлея),
  • Метеорные тела.

Чем отличается земная группа?

К планетам земной группы традиционно относят Меркурий, Венеру, Землю и Марс (в порядке удаления от Солнца). Орбиты этих четырёх планет расположены до Главного пояса астероидов. Эти планеты объединяют в одну группу также из-за схожести их физических свойств — они имеют небольшие размеры и массы, средняя плотность их в несколько раз превосходит плотность воды, они медленно вращаются вокруг своих осей, у них мало или совсем нет спутников (у Земли — один, у Марса — два, у Меркурия и Венеры — ни одного).

Планеты земного типа или группы отличаются от планет-гигантов меньшими размерами, меньшей массой, большей плотностью, более медленным вращением, гораздо более разрежёнными атмосферами (на Меркурии атмосфера практически отсутствует, поэтому его дневное полушарие сильно накаляется. Температура у планет земной группы значительно выше чем у гигантов (на Венере до плюс 500 С). Элементные составы планет земной группы и планет-гигантов также резко отличаются друг от друга. Юпитер и Сатурн состоят их водорода и гелия примерно в той же пропорции, что и Солнце. У планет земной группы имеется много тяжелых элементов. Земля в основном состоит из железа (35 %), кислорода (29 %) и кремния (15 %). Наиболее распространенные соединения в коре — окислы алюминия и кремния. Таким образом, элементный состав Земли резко отличается от солнечного.

Какие есть планеты-гиганты?

К планетам-гигантам относятся Юпитер, Сатурн, Уран и Нептун. Эти планеты обладают большими размерами, но небольшой плотностью из-за своего газового состава из водорода и гелия. Тем не менее примерно 98 % суммарной массы планет Солнечной системы приходится на массу планет-гигантов!  Тепловой поток из центра Юпитера и Сатурна немного превосходит поток энергии, получаемой планетой от Солнца, тогда как тепловой поток из центра Земли пренебрежимо мал по сравнению с потоком энергии, получаемой Землей от Солнца.Эти планеты удалены на большие расстояния от Солнца, поэтому самые дальние из них — Нептун и Уран, содержат большое количество льда и именуются ледяными гигантами.

Размеры планет солнечной системы

Планеты данного типа обладают большим количеством спутников, в отличие от планет земной группы, и обладают высокой скоростью вращения. Спутниками называются небольшие тела, вращающиеся вокруг планет. Область между планетами наполнена небольшими твердыми частицами и разреженными газами.

Что заставляет Венеру вращаться иначе

Из всех нетипично крутящихся тел нашей системы вторая планета от Солнца изучена более всего.

Одна из гипотез, объясняющих причины ее ретроградного вращения, гласит, что в момент образования солнечных планетарных тел из вращающегося газопылевого диска сгусток пыли и энергии, из которого предстояло родиться Венере, столкнулся с рождающимся Меркурием, отчего внезапно начал крутиться в противоположную к остальным протопланетам сторону — по часовой стрелке.

Другая теория предполагает следующее: виновницей того, что Венера обращается ретроградно, стала ее слишком высокая и плотная атмосфера — она тормозит вращение, закручивая планету в обратную сторону.

Еще одна интересная версия гласит, что тело перевернули спровоцированные влиянием центрального светила мощные гравитационные приливы и вызванное ими трение между планетарными мантией и ядром.


Возможно, плотная атмосфера заставляет Венеру вращаться в другую сторону. Credit: V-kosmose.com

Большой наклон оси Венеры, близкий к 180°, является препятствием для смены на планете времен года — здесь постоянно длится лето. Полный орбитальный оборот планета совершает за 225 земных дней, суточное вращение занимает целых 243 дня. У этого космического тела сидерические сутки длятся дольше солнечного года.

Движение планет и строение Солнечной системы: сколько и как двигаются планеты вокруг Солнца?

Солнце является главным источником энергии и гравитации, которая позволяет удерживать возле себя все находящиеся возле него небесные тела, и помогает им вращаться по своим орбитам. К ним относятся следующие элементы:

  • Планеты, входящие в Солнечную систему
  • Пояс астероидов
  • Пояс Койлера и облако Оорта

Интересные факты

Рассмотрим эти планеты по мере удаления их от Солнца:

  • Меркурий – за 88 земных суток вращается наименьшая и самая близкая к главной звезде планета
  • Венера – с красивым названием, жгучим климатом и равносильным году днем — 224,7 земных суток вокруг Солнца и 223 вокруг оси
  • Земля – вокруг своей оси вращается за 24 часа, вокруг Солнца – за 365 суток со скоростью 29,765 км/с
  • Марс – имеющая период вращения вокруг Солнца почти как у Земли – 24 часа 37 минут
  • Юпитер – гигантская планета, свойственно, имеет и самое быстрое вращение вокруг своей оси – 10 часов. Но вокруг Солнца Юпитер вращается за 10 земных лет
  • Сатурн – вращение вокруг оси происходит за 10,7 часов, вокруг Солнца – за 29,5 земных лет
  • Уран – вращается вокруг Солнца за 84 земных года или 30 687 дня
  • Нептун – его полный оборот вокруг Солнца составляет 164,79 года, вокруг своей оси – около 16 часов

Движение планет вокруг Солнца и период их вращения

  1. Поясу астероидов, который находится между Марсом и Юпитером, также присуще движение вокруг Солнца. Каждый из них движется с разной скоростью, в среднем от 3,5 до 6 земных лет, в том же направлении, что и планеты.
  2. Пояс Койлера, находящийся на «окраине» Солнечной системы и состоящий из скопления комет и карликовых планет, так же как и облако Оорта, состоящее из скопления миллиардов ледяных тел, подчиняются общим законам гравитации. Все составляющие космические тела также вращаются вокруг Солнца с периодом более 200 лет. За пределами этих поясов законы гравитации уже не работают и это пространство не принадлежит к Солнечной системе.

Как видим, в нашей жизни и во всей Вселенной каждая деталь имеет свое значение и направление, как и движение планет и всех космических тел. Они словно зависят друг от друга, а в нашей Солнечной системе — от Солнца, которое и задает вращение.

Почему Солнечная система не распадается

Космическое пространство не является пустотой. Все пространство вокруг звезд и планет наполнено космической пылью или темной материей, которая окружает все галактики. Большие скопления космической пыли называют облаками и туманностями. Часто облака космической пыли окружают крупные объекты – звезды и планеты.

Солнечная система окружена такими облаками. Они создают эффект упругого тела, что придает ей больше прочности. Другим фактором, не дающим распасться Солнечной системе, является сильное гравитационное взаимодействие между Солнцем и планетами, а также большое расстояние до ближайших к нему звезд. Так, самая близкая к Солнцу звезда Сириус находится на расстоянии около 10 млн световых лет. Чтобы было понятно, насколько это далеко, достаточно сравнить расстояние от светила до планет, входящих в состав Солнечной системы. Например, расстояние от него до Земли составляет 8,6 световых минут. Поэтому взаимодействие Солнца и других объектов внутри Солнечной системы значительно сильнее, чем других звезд.

Ретроградное движение за пределами Солнечной Системы

В последние десятилетия появилась возможность наблюдать чужие планетные системы у других звезд, а так же их протопланетные диски. К настоящему времени открыто около 4 тысяч внесолнечных планет. Эти открытия показали, что почти у каждой звезды могут существовать хотя бы небольшие планеты на небольшом расстоянии от звезды (внутри земной орбиты).

Измерения лучевых скоростей звезд с известными транзитными планетами позволяют определить угол между экватором звезды и плоскостью орбиты транзитной планеты (т.н. Rossiter–McLaughlin(RM)-эффект). К настоящему времени этот эффект измерен для 134 транзитных планет.

Измеренные углы показали, что орбиты большинства транзитных планет находятся вблизи плоскости экватора своих звезд

В то же время, как следует из вышеприведенных схем, у некоторых транзитных планет наблюдается даже ретроградное вращение. Теоретики предполагают, что такие необычные орбиты связаны с наличием в системе других массивных объектов (к примеру, планет или звезд).

Первой открытой ретроградной планетой стал горячий юпитер HAT-P-7b, открытый в 2009 году. Позже к нему добавились открытия новых ретроградных планет: горячего нептуна HAT-P-11b и горячих юпитеров HAT-P-6b, HAT-P-14b, KELT-17b , KELT-19b, Kepler-56b, Kepler-56c, Kepler-63b, WASP-2b, WASP-8b, WASP-15b, WASP-17b, WASP-33b, WASP-60b, WASP-76b, WASP-79b, WASP-94b, WASP-121b, WASP-167b. В общей сложности среди 134 исследованных транзитных планет у 20 наблюдаются ретроградные орбиты. Это доля (14% или 1 к 7) незначительно больше, чем у Солнечной Системы (отсутствие известных ретроградных планет приводит к верхнему пределу в 13%).

В планетных системах с известными ретроградными планетами обнаружено сравнительно небольшое количество других звезд-компаньонов. К этим системам относятся только WASP-2 и WASP-94 (10% известных систем с ретроградными планетами). Такое небольшое количество известных двойных систем (как известно примерно половина звезд входит в состав кратных систем) может быть вызвано слабой исследованностью  этих планетных систем: большинство известных ретроградных планет обнаружено в последнем десятилетии. С другой стороны, небольшое количество известных двойных звездных систем среди известных ретроградных планет может говорить о том, что ключевую роль в дестабилизации планетных систем играют близкие звезды во время формирования систем в областях звездообразования.

Кроме ретроградного движения и вращения в астросейсмологии существует понятие ретроградных колебаний, которые распространяются против направления вращения звезд.

Ретроградные галактики

В дополнение в последние десятилетия обнаружены примеры галактик с ретроградным движением отдельных их частей. Такими примерами являются ретроградное движение  облаков нейтрального водорода в нашей галактике, ретроградное движение балджа в галактике NGC 7331 и ретроградное вращение сверхмассивных черных дыр в центрах галактик. Отмечается, что ретроградное движение отдельных частей галактик, скорее всего, является следствием недавних слияний нескольких галактик. Сверхмассивные черные дыры с ретроградным вращением отличаются аномально сильными полярными джетами. Кроме того, по ретроградным орбитам движутся многие звезды гало галактик – самой старой популяции звезд в галактиках. Примером такого движения может быть траектория близкой звезды Каптейна с большим собственным движением.

Движение Солнца, Луны и звезд

Наблюдения за небом начались еще в древности, и первыми небесными телами, на которые обратил внимание человек, были Солнце, Луна и звезды. Все они в течение дня движутся по небу по траекториям-окружностям, в центре которых находится Земля

Это обстоятельство и позволило уже в античности создать систему мира, в которой Земля находилась в центре Вселенной, а вокруг нее по небесной сфере двигались Солнце, Луна и звезды

Все они в течение дня движутся по небу по траекториям-окружностям, в центре которых находится Земля. Это обстоятельство и позволило уже в античности создать систему мира, в которой Земля находилась в центре Вселенной, а вокруг нее по небесной сфере двигались Солнце, Луна и звезды.

Воображаемая ось, вокруг которой лежат траектории-окружности звезд, называется осью мира. В северном полушарии эта ось практически точно попадает в звезду, называемую Полярной. Получается, что Полярная звезда «вращается вокруг своей оси», а все остальные звезды, Солнце и Луна — по окружностям вокруг нее. Если сделать длительную фотографию полярной области неба, можно убедиться в этом:

Рис. 1. Фотография звездных треков вокруг полюса мира.

Солнце движется по небесной сфере по такой же окружности, но чуть быстрее звезд, и со временем смещается относительно них. Путь, который проделывает Солнце среди звезд, называется эклиптикой. Луна также движется вблизи эклиптики.