Видимое излучение: применение в медицине и в жизни, источники, свойства, кем и когда открыто

История

Цветовой круг Ньютона из Opticks 1704 года показывает цвета, которые он ассоциировал с музыкальными нотами . Спектральные цвета от красного до фиолетового делятся нотами музыкальной гаммы, начиная с D. Круг завершает полную октаву от D до D. В круге Ньютона красный на одном конце спектра, рядом с фиолетовым, в точке. другой. Это отражает тот факт, что при смешивании красного и фиолетового света наблюдаются неспектральные пурпурные цвета.

В 13 веке Роджер Бэкон предположил, что радуга образовывалась с помощью процесса, аналогичного прохождению света через стекло или кристалл.

В 17 веке Исаак Ньютон обнаружил, что призмы могут разбирать и собирать белый свет, и описал это явление в своей книге « Оптика» . Он был первым, кто использовал слово « спектр» ( латинское «появление» или «привидение») в этом смысле в печати в 1671 году при описании своих экспериментов в оптике . Ньютон заметил, что, когда узкий луч солнечного света попадает на грань стеклянной призмы под углом, часть его отражается, а часть луча проходит в стекло и сквозь него, проявляясь в виде полос разного цвета. Ньютон предположил, что свет состоит из «корпускул» (частиц) разного цвета, при этом свет разных цветов движется с разной скоростью в прозрачной материи, причем красный свет движется быстрее, чем фиолетовый в стекле. В результате красный свет изгибается ( преломляется ) менее резко, чем фиолетовый, когда он проходит через призму, создавая спектр цветов.


Наблюдение Ньютоном призматических цветов ( Дэвид Брюстер 1855)

Первоначально Ньютон разделил спектр на шесть названных цветов: красный , оранжевый , желтый , зеленый , синий и фиолетовый . Позже он добавил индиго в качестве седьмого цвета, так как считал, что семь было идеальным числом, полученным от древнегреческих софистов , о существовании связи между цветами, музыкальными нотами, известными объектами в солнечной системе и днями неделя. Человеческий глаз относительно нечувствителен к частотам индиго, и некоторые люди с хорошим зрением не могут отличить индиго от синего и фиолетового. По этой причине некоторые более поздние комментаторы, в том числе Исаак Азимов , предположили, что индиго не следует рассматривать как самостоятельный цвет, а просто как оттенок синего или фиолетового. Факты указывают на то, что то, что Ньютон имел в виду под «индиго» и «синим», не соответствует современным значениям этих цветных слов. Сравнивая наблюдения Ньютона призматических цветов к цветному изображению видимого показывает спектр света , который «индиго» соответствует тому , что сегодня называется синим, в то время как его «голубым» соответствует голубому цвету .

В 18 веке Иоганн Вольфганг фон Гете писал об оптических спектрах в своей Теории цвета . Гете использовал слово « спектр» ( Spektrum ) для обозначения призрачного оптического остаточного изображения , как это сделал Шопенгауэр в « О зрении и цветах» . Гете утверждал, что непрерывный спектр — сложное явление. Там, где Ньютон сузил луч света, чтобы изолировать явление, Гете заметил, что более широкая апертура дает не спектр, а красновато-желтые и сине-голубые края с белыми между ними. Спектр появляется только тогда, когда эти края достаточно близки для перекрытия.

В начале 19 века концепция видимого спектра стала более определенной, поскольку свет за пределами видимого диапазона был открыт и охарактеризован Уильямом Гершелем ( инфракрасный ) и Иоганном Вильгельмом Риттером ( ультрафиолетовый ), Томасом Янгом , Томасом Иоганном Зеебеком и другими. Янг был первым, кто измерил длины волн света разных цветов в 1802 году.

Связь между видимым спектром и цветовым зрением была исследована Томасом Янгом и Германом фон Гельмгольцем в начале 19 века. Их теория цветового зрения правильно предполагала, что глаз использует три различных рецептора для восприятия цвета.

Почему небо голубое, а трава зеленая?

Вообще-то это два вопроса, а не один. И поэтому мы дадим два разных, но связанных между собой ответа. Мы видим ясное небо в полдень голубым, потому что короткие волны света более эффективно рассеиваются при столкновении с молекулами газа в атмосфере, чем длинные. Так что голубизна, которую мы видим в небе — это синий свет, рассеянный и многократно отраженный молекулами атмосферы.

Но на восходе и закате небо может приобретать красноватый цвет. Да, и такое бывает, поверьте. Это происходит потому, что когда Солнце находится близко к горизонту, свету, чтобы достичь нас, приходится проделать более долгий путь через гораздо более плотный слой атмосферы (к тому же еще и довольно пыльный), чем когда Солнце находится в зените. Все короткие волны поглощаются, и нам остается довольствоваться длинными, отвечающими за красную часть спектра.

А вот с травой все слегка по-другому. Она выглядит зеленой, потому что поглощает все длины волн, кроме зеленых. Зеленые ей, видите ли, не по душе, поэтому она их отражает обратно нам в глаза. По этой же причине любой объект имеет свой цвет — мы видим ту часть спектра света, которую он не смог поглотить. Черные предметы выглядят черными, потому что поглощают все длины волн, практически ничего при этом не отражая, а белые — наоборот, отражают весь видимый спектр света. Это также объясняет, почему черное нагревается на солнце гораздо сильнее, чем белое.

Небо голубое, трава зеленая, собака — друг человека

Лекарственное средство

Применение видимого излучения в медицине – это обычное дело. Лазеры используются в микрохирургических процедурах, таких как выполнение небольших точных разрезов, операций на печени и капиллярной хирургии, что приводит к небольшой потере крови. Лазеры также используются в офтальмологии (удаление катаракты и коррекция зрения), дерматологии (удаление татуировок и шрамов), стоматологии (очищение полости), онкологии (лечение рака кожи).

Какой можно привести пример применения видимого излучения в медицине? Светотерапия также используется для облегчения сезонного аффективного расстройства, регулирует ваши внутренние биологические часы (суточные ритмы) и влияет на настроение. Терапевтическое применение света и цвета также исследуется во многих больницах и исследовательских центрах по всему миру. Результаты пока показывают, что полный спектр, ультрафиолетовый, цветной и лазерный свет могут иметь терапевтическое значение для ряда условий – от хронической боли и депрессии до иммунных расстройств.

Видимая область.

Видимой области соответствует диапазон длин волн от 400 нм (фиолетовая граница) до 760 нм (красная граница), что составляет ничтожную часть полного электромагнитного спектра. Источниками видимого света в лаборатории обычно служат раскаленные твердые тела, электрический разряд и лазеры (обычно лазеры на красителях). Перестраиваемые лазеры на красителях позволяют перекрывать большие участки видимого спектра (например, краситель родамин 6G излучает в интервале 570–660 нм). Наиболее распространенными детекторами видимого излучения являются глаз человека, фотопластинки, фотоэлементы, фотоумножители. Видимые спектры связаны с квантовыми переходами внешних электронов атомов и молекул и содержат важнейшую информацию об их электронной структуре.

Спектр видимого излучения[]

При разложении луча белого цвета в призме образуется спектр, в котором излучения разных длин волн преломляются под разными углами. Цвета, входящие в спектр, то есть такие цвета, которые могут быть получены с помощью света одной длины волны (точнее, с очень узким диапазоном длин волн), называются спектральными цветами. Основные спектральные цвета (имеющие собственное название), а также характеристики излучения этих цветов, представлены в таблице:

Цвет Диапазон длин волн, нм Диапазон частот, ТГц Диапазон энергии фотонов, эВ
Фиолетовый ≤450 ≥667 ≥2,75
Синий 450—480 625—667 2,58—2,75
Сине-зелёный 480—510 588—625 2,43—2,58
Зелёный 510—550 545—588 2,25—2,43
Желто-зелёный 550—570 526—545 2,17—2,25
Жёлтый 570—590 508—526 2,10—2,17
Оранжевый 590—630 476—508 1,97—2,10
Красный ≥630 ≤476 ≤1,97

Указанные в таблице границы диапазонов носят условный характер, в действительности же цвета плавно переходят друг в друга, и расположение видимых наблюдателем границ между ними в большой степени зависит от условий наблюдения.

Корпускулярно-волновой дуализм

Вопрос, на который вам однозначно не ответит никто: «Свет — это частица или волна?». Это очень сложный вопрос, на который ученые давно пытаются ответить.

В XVII веке Исаак Ньютон предложил модель, в которой свет — поток мельчайших корпускул (частиц). Это позволяло просто объяснить многие характерные свойства света. Например, прямолинейность световых лучей и закон отражения, согласно которому угол отражения света равен углу падения. Это соотносится с законом сохранения импульса, которому подчиняются частицы.

Но есть такие явления, как интерференция и дифракция. Они совсем не вписываются в корпускулярную теорию.

Интерференция и дифракция

Интерференция — это явление, при котором происходит наложение двух волн и образуются так называемые «максимумы» и «минимумы» — самые светлые и самые темные участки. Выглядит это так:

В жизни вы это встречали, например, если видели разлитый бензин или пускали мыльные пузыри. Это все следствие интерференции света.

Дифракция неразрывно связана с явлением интерференции. Более того, само явление дифракции зачастую трактуют как случай интерференции ограниченных в пространстве волн.

Дифракция — это явление огибания препятствий, которые возникают перед волной. Благодаря дифракции свет может огибать препятствие и попадать туда, где с точки зрения геометрии должна быть тень.

В XIX веке появилась волновая теория света, которая объясняла дифракцию и интерференцию. Согласно этой теории, свет — частный случай электромагнитных волн, то есть процесса распространения электромагнитного поля в пространстве.

Волновая оптика вообще казалась в то время каким-то чудом, потому что она объясняла не только те явления, которые не объясняла корпускулярная теория, но и вообще все известные на то время световые эффекты. Даже законы геометрической оптики можно было доказать через волновую оптику.

Казалось бы, ну все тогда — у света волновая природа, никаких тебе частиц, расходимся. Но не тут-то было! Уже в начале XX века корпускулярная теория света снова набрала актуальность, так как ученые обнаружили явления, которые с помощью волновой теории объяснить не удавалось. Например, давление света и фотоэффект, о которых мы еще поговорим.

В рамках корпускулярной теории эти явления прекрасно объяснялись, и корпускулы (частицы) света даже получили название — фотоны.

Сложилась интересная ситуация — параллельно существовали две серьезные научные теории, каждая из которых объясняла одни свойства света, но не могла объяснить другие. Вместе же эти две теории идеально дополняют друг друга. Так мы подошли к понятию корпускулярно-волновой природы света.

Корпускулярно-волновой дуализм — это физический принцип, утверждающий, что любой объект природы может вести себя и как частица, и как волна.

Инфракрасное излучение.

Инфракрасное (ИК) излучение было открыто английским астрономом В.Гершелем в 1800. Пользуясь простым термометром, он установил, что тепловое излучение имеет наибольшую интенсивность за пределами видимой области вблизи его красной границы. Инфракрасная область спектра начинается примерно от 0,8 мкм и простирается примерно до 1 мм. Ранее лабораторными источниками инфракрасного излучения служили исключительно раскаленные тела либо электрические разряды в газах. Сейчас на основе твердотельных и молекулярных газовых лазеров созданы современные источники инфракрасного излучения с регулируемой или фиксированной частотой. Для регистрации излучения в ближней ИК-области (до ~1,3 мкм) используются специальные фотопластинки. Более широким диапазоном чувствительности (примерно до 25 мкм) обладают фотоэлектрические детекторы и фоторезисторы. Излучение в дальней ИК-области регистрируется болометрами – детекторами, чувствительными к нагреву инфракрасным излучением.

ИК-аппаратура находит широкое применение как в военной технике (например, для наведения ракет), так и в гражданской (например, в волоконно-оптических системах связи). В качестве оптических элементов в ИК-спектрометрах используются либо линзы и призмы, либо дифракционные решетки и зеркала. Чтобы исключить поглощение излучения в воздухе, спектрометры для дальней ИК-области изготавливаются в вакуумном варианте.

Поскольку инфракрасные спектры связаны с вращательными и колебательными движениями в молекуле, а также с электронными переходами в атомах и молекулах, ИК-спектроскопия позволяет получать важные сведения о строении атомов и молекул, а также о зонной структуре кристаллов.

Дополнительные приложения

УФ / видимый свет можно применять для определения кинетики или константы скорости химической реакции . Реакция, протекающая в растворе, должна демонстрировать изменение цвета или яркости от реагентов к продуктам, чтобы использовать УФ / видимый свет для этого применения. Например, молекула дитизоната ртути имеет желто-оранжевый цвет в разбавленном растворе (1 * 10 ^ -5 M) и становится синей при воздействии определенных длин волн видимого света (и УФ) через конформационные изменения, но эта реакция обратимо обратно в желтое «основное состояние».

Используя оптические волокна в качестве передающего элемента спектра горючих газов, можно определить химический состав топлива, температуру газов и соотношение воздух-топливо.

Константу скорости конкретной реакции можно определить путем измерения спектра поглощения УФ / видимой области через определенные интервалы времени. Снова используя дитизонат ртути в качестве примера, можно направить свет на образец, чтобы раствор стал синим, а затем запускать УФ / видимый тест каждые 10 секунд (переменная), чтобы увидеть, как уровни поглощенных и отраженных длин волн меняются с течением времени в соответствии с раствор снова становится желтым из возбужденного синего энергетического состояния. По этим измерениям можно рассчитать концентрацию двух видов. Реакция дитизоната ртути от одной конформации к другой является реакцией первого порядка и будет иметь интегральный закон скорости первого порядка: ln (время t) = — kt + ln (начальное). Следовательно, при построении графика натурального логарифма (ln) концентрации в зависимости от времени будет построена линия с наклоном -k или отрицательной константой скорости. Различные порядки скорости имеют разные интегрированные законы скорости в зависимости от механизма реакции.

Константу равновесия можно также рассчитать с помощью УФ / видимой спектроскопии. После определения оптимальных длин волн для всех частиц, участвующих в равновесии, можно провести реакцию до равновесия , а концентрацию компонентов определить с помощью спектроскопии на различных известных длинах волн. Константу равновесия можно рассчитать как K (экв) = / .

Видимый свет – это электромагнитная волна

Обычно наблюдаемый свет представляет собой комбинацию различных цветных световых волн. Эти разные цвета света обусловлены разными частотами света. Видимый свет имеет много применений в оптике, материаловедении, конденсированном веществе, лазерных науках, разных отраслях промышленности, которые используют этот свет для экспериментов и каждый день. Примерами являются экраны проекторов, лазерный луч, используемый в шоу, или указатель, камера и так далее.

Свет – это часть электромагнитного спектра, к которому чувствительны наши глаза. Главное применение видимого света – это способность видеть вещи своими глазами. Излучение спектра передается волнами или частицами на разных длинах волн и частотах. Этот широкий диапазон длин волн известен как электромагнитный спектр. Этот спектр классически разделен на семь областей в порядке уменьшения длины волны и увеличения энергии и частоты. Наши глаза могут обнаружить только крошечную часть электромагнитного спектра, называемую видимым светом.

Так работают лампочки: электрический ток нагревает ламповую нить примерно до 3000 градусов, и она светится горячим светом. Поверхность Солнца составляет около 5600 градусов и выделяет много света. Белый свет фактически состоит из целого ряда цветов, смешанных друг с другом. Это можно увидеть, если пропустить белый свет через стеклянную призму. Компакт-диски считываются лазерным излучением. Лазеры используются в компакт-дисках и DVD-плеерах, где свет отражается от крошечных ямок на диске, при этом происходит преобразование в звук или данные. Лазеры также используются в лазерных принтерах и в системах прицеливания самолетов.

ИК-лучи: влияние на здоровье людей

Благоприятное воздействие солнечного света на здоровье человека подтверждено научно. Однако чрезмерное пребывание под солнечным излучением потенциально опасно. Солнечный свет содержит ультрафиолетовые лучи, действие которых сжигает кожу тела человека.

Инфракрасные сауны массового пользования широко распространены в Японии и Китае. И тенденция на развитие этого способа оздоровления только усиливается

Между тем инфракрасное излучение дальнего диапазона волн обеспечивает все преимущества для здоровья, получаемые от естественного солнечного света. При этом полностью исключается опасное воздействие солнечной радиации.

Применением технологии воспроизводства ИК-лучей, достигается полный контроль температуры (инфракрасные сауны), неограниченный солнечный свет. Но это далеко не все известные факты преимуществ инфракрасного излучения:

    • Инфракрасные лучи дальнего диапазона укрепляют сердечно-сосудистую систему, стабилизируют сердечный ритм, увеличивают сердечный выброс, уменьшая при этом диастолическое артериальное давление.
    • Стимуляция сердечно-сосудистой функции инфракрасным светом дальнего диапазона — идеальный способ поддержания в норме сердечно-сосудистой системы. Есть опыт американских астронавтов во время длительного космического полета.
    • ИК-лучи дальнего инфракрасного диапазона с температурой выше 40°C ослабляют и в конечном итоге убивает раковые клетки. Этот факт подтвержден Американской онкологической ассоциацией и Национальным институтом рака.
    • Инфракрасные сауны часто используются в Японии и Корее (терапия гипертермии или Waon-терапия) для лечения от сердечно-сосудистых заболеваний, особенно в части хронической сердечной недостаточности и периферических артериальных заболеваний.
    • Результаты исследований, опубликованные в журнале «Нейропсихиатрическая болезнь и лечение», показывают инфракрасные лучи как «медицинский прорыв» в лечении черепно-мозговых травм.
    • Инфракрасная сауна считается в семь раз более эффективной при выводе из организма тяжелых металлов, холестерина, спирта, никотина, аммиака, серной кислоты и других токсинов.
    • Наконец, FIR-терапия в Японии и Китае вышла на первое место среди эффективных способов лечения астмы, бронхита, простуды, гриппа, синусита. Отмечено, что FIR-терапия убирает воспаления, отеки, слизистые закупорки.

Инфракрасный свет и продолжительность жизни 200 лет

Ниже демонстрируется интересный по содержанию видеоролик, затрагивающий рассмотренную тему. Видео рассказывает об эффективности света инфракрасного диапазона и о том, каких необычных результатов может достичь человек:

Рентгеновское излучение.

В 1895 было сделано одно из самых важных открытий физики: В.Рентген, изучая электрические разряды в газах, заметил, что бумажный экран, подвергнутый специальной обработке, начинает светиться, если его поднести к работающей газоразрядной трубке, и сделал вывод, что свечение возникает под действием нового, неизвестного проникающего излучения, названного им X-лучами. Из дальнейших экспериментов выяснилось, что X-лучи – это электромагнитное излучение, длинноволновая граница которого перекрывается с вакуумным ультрафиолетом, а коротковолновая составляет малую долю нанометра.

Рентгеновское излучение с непрерывным спектром часто называют тормозным излучением, поскольку оно возникает при замедлении электронов, бомбардирующих анод рентгеновской трубки. См. также

РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ.

Световые волны

Термин «световые волны» может использоваться по-разному разными людьми. Физики склонны небрежно использовать его на одном уровне с электромагнитными. Итак, в чем разница? Электромагнитные волны (или электромагнитное излучение) представляют собой волны, создаваемые колебательными магнитными и электрическими полями, и включают радиоволны, микроволны, инфракрасные, видимые, ультрафиолетовые, рентгеновские и гамма-лучи. Как и все волны, они несут энергию, и эта энергия может быть очень высокой интенсивности (например, электромагнитные волны, которые мы получаем от солнца).

При взгляде на спектр видимого света синим концом электромагнитного спектра является высокая частота, высокая энергия и короткая длина волны. Красный конец электромагнитного спектра представляет собой низкочастотную, малую энергию и большую длину волны. Свет — это лишь часть электромагнитного спектра, часть, которую могут видеть наши глаза. Каковы сферы применения видимого излучения, кроме той, которая позволяет человеку видеть все вокруг?

История[]

Файл:Newton’s colour circle.png

Круг цветов Ньютона из книги «Оптика» (1704), показывающий взаимосвязь между цветами и музыкальными нотами. Цвета спектра от красного до фиолетового разделены нотами, начиная с ре (D). Круг составляет полную октаву. Ньютон расположил красный и фиолетовый концы спектра друг рядом с другом, подчёркивая, что из смешения красного и фиолетового цветов образуется пурпурный.

Первые объяснения спектра видимого излучения дали Исаак Ньютон в книге «Оптика» и Иоганн Гёте в работе «Теория Цветов», однако ещё до них Роджер Бэкон наблюдал оптический спектр в стакане с водой. Лишь спустя четыре века после этого Ньютон открыл дисперсию света в призмах.

Ньютон первый использовал слово спектр (Шаблон:Lang-lat — видение, появление) в печати в 1671 году, описывая свои оптические опыты. Он сделал наблюдение, что, когда луч света падает на поверхность стеклянной призмы под углом к поверхности, часть света отражается, а часть проходит через стекло, образуя разноцветные полосы. Учёный предположил, что свет состоит из потока частиц (корпускул) разных цветов, и что частицы разного цвета движутся с различной скоростью в прозрачной среде. По его предположению, красный свет двигался быстрее чем фиолетовый, поэтому и красный луч отклонялся на призме не так сильно, как фиолетовый. Из-за этого и возникал видимый спектр цветов.

Ньютон разделил свет на семь цветов: красный, оранжевый, жёлтый, зелёный, голубой, индиго и фиолетовый. Число семь он выбрал из убеждения (происходящего от древнегреческих софистов), что существует связь между цветами, музыкальными нотами, объектами Солнечной системы и днями недели. Человеческий глаз относительно слабо восприимчив к частотам цвета индиго, поэтому некоторые люди не могут отличить его от голубого или фиолетового цвета. Поэтому после Ньютона часто предлагалось считать индиго не самостоятельным цветом, а лишь оттенком фиолетового или голубого (однако он до сих пор включён в спектр в западной традиции). В русской традиции индиго соответствует синему цвету.

Гёте, в отличие от Ньютона, считал, что спектр возникает при наложении разных составных частей света. Наблюдая за широкими лучами света, он обнаружил, что при проходе через призму на краях луча проявляются красно-желтые и голубые края, между которыми свет остаётся белым, а спектр появляется, если приблизить эти края достаточно близко друг к другу.

Длины волн, соответствующие различным цветам видимого излучения были впервые представлены 12 ноября 1801 года в Шаблон:Не переведено 5 Томасом Юнгом, они получены путём перевода в длины волн параметров колец Ньютона, измеренных самим Исааком Ньютоном. Эти кольца Ньютон получал пропусканием через линзу, лежащую на ровной поверхности, соответствующей нужному цвету части разложенного призмой в спектр света, повторяя эксперимент для каждого из цветовШаблон:Rp. Юнг оформил полученные длины волн в виде таблицы, выразив во французских дюймах (1 дюйм=27,07 мм), будучи переведёнными в нанометры, их значения неплохо соответствуют современным, принятым для различных цветов. В 1821 году Йозеф Фраунгофер положил начало измерению длин волн спектральных линий, получив их от видимого излучения Солнца с помощью дифракционной решётки, измерив углы дифракции теодолитом и переведя в длины волн. Как и Юнг, он выразил их во французских дюймах, переведённые в нанометры, они отличаются от современных на единицыШаблон:Rp. Таким образом, ещё в начале XIX века стало возможным измерять длины волн видимого излучения с точностью до нескольких нанометров.

В XIX веке, после открытия ультрафиолетового и инфракрасного излучений, понимание видимого спектра стало более точным.

В начале XIX века Томас Юнг и Герман фон Гельмгольц также исследовали взаимосвязь между спектром видимого излучения и цветным зрением. Их теория цветного зрения верно предполагала, что для определения цвета глаз использует три различных вида рецепторов.

Методика проведения

Воздействие осуществляется на обнаженные участки тела человека. Источником света могут быть лампы соллюкс, рефлекторы медицинские, светодиодные излучатели. Расстояние от рефлектора до поверхности области облучения определяется видом и мощностью этих источников. Если воздействие осуществляется на кожные покровы, то глаза больного должны быть защищены специальными очками. Дозирование процедуры осуществляется по субъективным ощущениям пациента и по плотности потока энергии. Могут использоваться методы психофизиологической оценки цветовосприятия. Продолжительность процедур и их количество подбирается индивидуально. Лечебный сеанс длится около 20 минут и сопровождается ощущением легкого тепла. На курс лечения приходится от 10 до 20 процедур, которые проводятся каждый день. При необходимости назначаются повторные курсы светолечения через 4-5-6 недель.