Астрономы нашли реальные доказательства существования черной дыры

Могут ли две черные дыры столкнуться

Теоретически это возможно, о чем сказано на официальном сайте НАСА. При столкновении 2-х черных дыр происходит их слияние в единый объект, практически с теми же свойствами, получается сверхмассивная черная дыра.

При этом нужно понимать, что черная дыра это не космический пылесос, который всасывает в себя все что не попадя. Она, как и любой другой объект имеет собственную гравитацию, которая притягивает объекты в зоне досягаемости своей силы тяготения. Чтобы 2 черные дыры слились в одно целое, необходимо чтобы хотя бы 1 из них попала в зону действия гравитации другой. Вероятность такого события увеличивается в системах с двумя массивными звездами, которые переходят в следующую фазу. А также вблизи центра галактики, где, как правило, располагаются сверхмассивные черные дыры и имеется большое скопление звезд.

Теоретически, такое событие как слияние черных дыр во вселенной происходит периодически и в масштабах вселенной это мгновения, а по нашему, человеческому времени на это может уйти не одно десятилетие.

Самые яркие объекты во Вселенной

Наш мир – совокупность парадоксов. Иногда в нем уживаются вещи, сосуществование которых не поддается никакой логике. Например, термин «черная дыра» не будет ассоциироваться у нормального человека с выражением «невероятно яркий», однако открытие начала 60-х годов прошлого века позволило ученым считать это утверждение неверным.

С помощью телескопов астрофизикам удалось обнаружить неизвестные до того момента объекты на звездном небе, которые вели себя совсем странно несмотря на то, что выглядели, как обычные звезды

Изучая эти странные светила, американский ученый Мартин Шмидт обратил внимание на их спектрографию, данные которой показывали отличные от сканирования других звезд результаты. Проще говоря, эти звезды не были похожи на другие, привычные нам

Внезапно Шмидта осенило, и он обратил внимание на смещение спектра в красном диапазоне. Оказалось, что эти объекты намного дальше от нас, чем те звезды, что мы привыкли наблюдать в небе

Например, наблюдаемый Шмидтом объект был расположен в двух с половиной миллиардах световых лет от нашей планеты, но светил так же ярко, как и звезда в каких-нибудь сотне световых лет от нас. Получается, свет от одного такого объекта сопоставим с яркостью целой галактики. Такое открытие стало настоящим прорывом в астрофизике. Ученый назвал эти объекты «quasi-stellar» или просто «квазар».

Мартин Шмидт продолжил изучение новых объектов и выяснил, что столь яркое свечение может быть вызвано только по одной причине – аккреции. Аккреция – это процесс поглощения сверхмассивным телом окружающей материи с помощью гравитации. Ученый пришел к выводу, что в центре квазаров находится огромная черная дыра, которая с невероятной силой втягивает в себя окружающую ее в пространстве материю. В процессе поглощения дырой материи, частицы разгоняются до огромных скоростей и начинают светиться. Своеобразный светящийся купол вокруг черной дыры называется аккреационным диском. Его визуализация была хорошо продемонстрирована в киноленте Кристофера Нолана «Интерстеллар», которая породила множество вопросов «как черная дыра может светиться?».

На сегодняшний день ученые нашли на звездном небе уже тысячи квазаров. Эти странные невероятно яркие объекты называют маяками Вселенной. Они позволяют нам чуть лучше представить устройство космоса и ближе подойти к моменту, с которого все началось.

• Несмотря на то, что астрофизики уже много лет получали косвенные доказательства существования сверхмассивных невидимых объектов во Вселенной, термина «черная дыра» не существовало вплоть до 1967 года. Чтобы избежать сложных названий, американский физик Джон Арчибальд Уиллер предложил назвать такие объекты «черными дырами». Почему бы и нет? В какой-то мере они черные, ведь мы их не можем увидеть. К тому же они все притягивают, в них можно упасть, прямо как в настоящую дыру. Да и выбраться из такого места согласно современным законам физики просто невозможно. Впрочем, Стивен Хокинг утверждает, что при путешествии сквозь черную дыру можно попасть в другую Вселенную, другой мир, а это уже надежда.

Как обнаружить черную дыру

В конце своей жизни массивные звезды могут превращаться в черные дыры. И на этапе, когда только пытались найти первые черные дыры, возник вопрос: как их можно обнаружить. Первая идея была такой: звезды, особенно массивные, нередко рождаются парами. Одна из таких звезд превращается в черную дыру, и мы перестаем ее видеть. При этом она продолжает существовать. Предполагалось, что мы сможем увидеть вращение соседней звезды вокруг этого невидимого объекта, при помощи вычислений измерить его массу и обнаружить, что в этом месте находится черная дыра.

Сергей Попов рассказывает, что исторически это был первый предложенный способ поиска. С 60-х годов ученые пытались искать их по такому методу, но ничего не обнаружили. Последние пару лет стали появляться возможные кандидаты на звание черных дыр, но ученые пока не уверены, что в паре с обычными звездами находятся именно они.

Визуализация черной дыры

(Фото: NASA)

Если опять обратиться к черной дыре, которая соседствует со звездой, то вещество с обычной звезды может перетекать в дыру. Черная дыра своей гравитацией будет засасывать это вещество. Если представить, что в нее одновременно кинули два камня, они могут столкнуться над горизонтом на скорости почти равной скорости света. При таком столкновении выделится много энергии, которую можно заметить.

Но в звездах не камни, а газ. Когда разные слои газа трутся друг о друга, они нагреваются до миллионов градусов, и это тепло можно увидеть. С помощью такого способа в конце 60-х — начале 70-х годов, когда стали запускать первые рентгеновские детекторы в космос, открыли и первые черные дыры.

Визуализация черной дыры рядом со звездой

(Фото: NASA)

В начале 60-х годов стало ясно, что есть яркие астрономические объекты — квазары. Дословно— «похожий на звезду радиоисточник». Это активные ядра галактик на начальном этапе развития, в центре которых находятся сверхмассивные черные дыры. Обнаружить их можно даже на очень отдаленных расстояниях. В ходе изучения квазаров стало ясно, что это небольшой источник, который находится в центре далекой галактики и при этом испускает много энергии. Попов рассказывает, что когда ученые открывают квазар, они уверены, что там «сидит» сверхмассивная черная дыра. Сейчас это самый массовый способ открытия черных дыр.

Визуализация квазара

(Фото: NASA)

Почти все массивные звезды превращаются в черные дыры, но не все они находятся в двойных системах, или у них нет перетекания. В таком случае дыры ищут другим способом. Сергей рассказывает, что черная дыра сильно искажает пространство-время вокруг себя, но тут важна не столько масса, сколько компактность. Понять это легко, достаточно представить острый предмет. Это предмет с очень маленькой площадью. Если просто ткнуть куда-то пальцем, нельзя проткнуть поверхность, а если с такой же силой надавить на иголку, то проткнется палец, которым на нее давят. Так вот маленькие объекты при той же массе сильнее искривляют пространство-время вокруг себя. Такой эффект называется гравитационным линзированием.

Индустрия 4.0

Как полететь на Луну: самые популярные поисковые запросы на тему космоса

Ученые наблюдают за звездой и вдруг замечают, что ее блеск растет, а потом совершенно симметрично спадает обратно. Со звездой ничего не произошло, но между нами и звездой пролетел массивный объект. И этот массивный объект, искажая пространство-время, собрал световые лучи.

Визуализация черной дыры

(Фото: NASA)

Поэтому кажется, будто возрастает светимость звезды, а на самом деле просто больше ее света было собрано и попало к нам. Звезда с массой десять масс Солнца светила бы очень заметно, ученые бы ее не пропустили. А в таких наблюдениях появляется абсолютно темный объект с массой примерно десять солнечных. Что это может быть? Только черная дыра.

Если есть пара черных дыр, то, сливаясь, они будут порождать гравитационно-волновой всплеск. И в 2015 году впервые были обнаружены такие всплески гравитационного излучения. Это последний на сегодняшний день хороший способ поиска черных дыр.

Визуализация двух черных дыр

(Фото: NASA)

Информационный парадокс черных дыр

Вы наверняка слышали, что черные дыры уничтожают информацию, которая в них попадает. Почему это является такой огромной проблемой для физики, что ученые всеми силами пытаются избавиться от этой нелепой и нелогичной формулировки? Что ж, мир стал довольно сложным. В моем детстве все было проще. Трава была зеленее, газировка вкуснее, а черные дыры были черными. То есть черные дыры сжимали материю и энергию в бесконечно плотные сингулярности, не создавая непреодолимых парадоксов. Это были хорошие дни.

Но им пришел конец. Сегодня черные дыры вмещают все пятьдесят оттенков серого, изгибая законы физики один за другим. Что же такое информационный парадокс черной дыры?

Для начала давайте поговорим об информации. Когда физики говорят «Информация», они имеют в виду конкретное состояние каждой частицы во вселенной: масса, положение, спин, температура и т. д. отпечаток пальца, который уникальным образом идентифицирует каждого, и вероятность того, что эти частицы собираются делать во вселенной. Вы можете взять атомы, раздавить их или сжать вместе, но квантово — волновая функция, которая их описывает, всегда будет сохраняться.

Квантовая физика позволяет вам запускать всю вселенную вперед и назад до тех пор, пока вы обращаете все в своей математике: заряд, четность и время

Это важно. Светлые умы говорят нам, что информация должна жить, несмотря ни на что

Представьте ее в виде энергии. Вы не можете уничтожить энергию: только преобразовать.

Что такое черная дыра? Она образуется, когда крупнейшая звезда с массой в 20 раз превышающей солнечную жестоко коллапсирует и взрывается. Ее плотность материи чрезвычайно высока, скорость убегания превышает скорость света. Особо прикольные имеют перегретый диск аккреции с материей, которая кружится вокруг горизонта событий черной дыры, за пределы которого свет уже не может вырваться никак.

И тут у нас появляется один из самых странных побочных эффектов относительности: замедление времени. Представьте себе часы, падающие в направлении черной дыры, которые засасывает гравитационный колодец. Время будет идти медленнее по мере приближения к черной дыре, пока наконец не замерзнет на краю горизонта событий. Фотоны от часов вытянутся, и цвет часов пройдет через красное смещение. В конце концов, он исчезнет, поскольку фотоны вытянутся за пределы того, что могут обнаружить наши глаза.

Лишь в том случае, если бы вы смотрели на черную дыру миллиарды лет, вы увидели бы все, что она собрала, что застряло внутри, как на липучке. Вы нашли бы и часы, и «Титаник», и теоретически смогли бы определить квантовое состояние каждой отдельной частицы и фотона, который попал в черную дыру. Поскольку потребуется практически бесконечное количество времени, чтобы все испарилось совершенно, все в порядке.

Информация навсегда на поверхности черной дыры сохраняется. Все, что туда попало, определенно погибло, но их информация, их драгоценная квантовая информация, в полном порядке.

В 1975 году Стивен хокинг сбросил на черные дыры бомбу. Он осознал, что у черных дыр есть температура, и с течением огромного периода времени они совершенно испарятся, выпустив массу и энергию обратно во вселенную. Этот процесс был обозначен как излучение хокинга.

Но эта же идея парадокс породила. Информация о том, что попало в черную дыру сохраняется замедлением времени, но сама масса черной дыры испаряется. В конце концов, она совершенно исчезнет, и тогда куда денется информация? Та информация, которая не может быть уничтожена?

Астрономы в шоке. Десятками лет они работают, пытаясь решить этот вопрос. Есть небольшой набор вариантов:

Черные дыры не испаряются вовсе, хокинг ошибся.
Информация в черной дыре каким-то образом утекает вместе с излучением хокинга.
Черная дыра удерживает ее до самого конца, и когда испаряются две последних частицы, вся информация внезапно высвобождается во вселенную.
Информация сжимается в микроскопическое пространство, которое остается после испарения черной дыры.
Черная дыра.

Возможно, физики никогда не смогут выяснить это. Недавно хокинг выдвинул новую идею, которая могла бы разрешить информационный парадокс черной дыры. Он предположил, что есть некий способ, которым излучение хокинга могло бы уносить в себе информацию о новой материи, падающей в черную дыру.

Таким образом, информация обо всем, что падает, сохраняется уходящим излучением, возвращается во вселенную и разрешает парадокс. Но это догадка, поскольку и само излучение хокинга никто не обнаружил. Возможно, мы через много десятков лет узнаем не только то, в правильном направлении мы движемся или нет, но и собственно решение парадокса.

В ситуациях вроде этой мы вспоминаем, как мало знаем о вселенной на самом деле.

Существует несколько типов черных дыр

В зависимости от происхождения черной дыры, ее местоположения в космосе и по большей степени ее массы, ученые классифицировали их на несколько подгрупп.

Черная дыра звездной массы

Является одним из возможных этапов «жизни» звезды. Черная дыра звездной массы является самой маленькой в космическом пространстве по классификации. После полного выгорания термоядерного топлива звезда остывает, снижается ее внутреннее давление и она начинает сжиматься под действием собственной гравитации. Станет ли звезда в конечном итоге черной дырой зависит от ее массы и скорости вращения. Процесс сжатия может остановиться на определенном этапе, тогда звезда станет сверхплотной нейтронной звездой, а может наступить и стремительный гравитационный коллапс, вследствие чего она станет черной дырой.

Чтобы звезда превратилась в черную дыру, теоретически ее масса должна превышать в 3-4 раза массу нашего солнца. Однако, это лишь теория, так как необходимо знать как ведет себя вещество при чрезвычайно сильных плотностях, а это недоступно в условиях экспериментального изучения.

Данный тип значительно массивнее чем черная дыра звездной массы (от 10 до нескольких десятков масс солнца), но значительно меньше чем сверхмассивные черные дыры (от миллиона до сотен миллиардов масс солнца). Считается, что черных дыр средней массы относительно немного, если сравнивать их с меньшими или большими «собратьями». Природа происхождения черных дыр средней массы неизвестна человечеству, по одной из теорий это черные дыры звездной массы увеличившиеся до настоящих размеров за счет поглощения материи, которая входила в ее зону притяжения.

Сверхмассивные (ультрамассивные) черные дыры

Это огромные объекты даже по космическим меркам. Сверхмассивные черные дыры располагаются в центре большинства галактик, они как бы формируют ядро галактики. Сложно представить размер ультрамассивной черной дыры, но он превышает размер нашего солнца в миллионы и миллиарды раз!

В центре нашей галактики Млечный Путь также обнаружена сверхмассивная черная дыра, и называется она Стрелец A*. Масса этой ЧД по разным оценкам превышает массу солнца от 3 до 6,4 млрд раз.

Квантовые черные дыры

Существует гипотеза, что в результате ядерных реакций могут возникать устойчивые микроскопические черные дыры (квантовые черные дыры). На большом адронном коллайдере проводился эксперимент, целью которого было проверить теорию формирования квантовых черных дыр. Однако эксперимент показал, что энергии, которую выдает ускоритель недостаточно для синтеза черных дыр. В теории такие черные дыры живут мгновения и затем исчезают выбрасывая в окружающее пространство большое количество энергии.

Квантовая черная дыра – это предположение, основанное на теории квантовой физики, однако экспериментальных подтверждений ее существования пока получить не удалось.

Существует ли угроза для Земли?

 Есть две черные дыры, которые могут представлять реальную угрозу нашей планете, но находятся они, к счастью, для нас далеко на расстоянии примерно 1600 световых лет. Ученые смогли обнаружить эти объекты только потому, что находились они вблизи Солнечной Системы и специальные приборы, улавливающие рентгеновские лучи, смогли их увидеть. Есть предположение, что огромная сила гравитации способна повлиять на черные дыры таким образом, что они сольются в одну.

Вряд ли кто-то из современников сможет застать тот момент, когда эти таинственные объекты исчезнут. Настолько медленно происходит процесс гибели дыр.

Черная дыра – это звезда в прошлом

Как образуются черные дыры в космосе? Звезды имеют внушительный запас термоядерного топлива, из-за чего они и светятся так ярко. Но все ресурсы заканчиваются, и звезда охлаждается, постепенно теряя свое свечение и превращаясь в черного карлика. Известно, что в остывшей звезде происходит процесс сжатия, в итоге она взрывается, а ее частицы разлетаются на огромные расстояния в космосе, притягивая соседние объекты, тем самым увеличивая размер черной дыры.

Самое интересное про черные дыры в космосе нам еще предстоит изучить, но удивительно, плотность ее, несмотря на внушительные размеры, может равняться плотности воздуха. Это говорит о том, что даже самые крупные объекты космоса могут иметь такой же вес, как воздух, то есть быть невероятно легкими. Вот как появляются черные дыры в космосе.

Время в самой черной дыре и возле течет очень медленно, поэтому объекты, пролетающие рядом замедляют свое движение. Причиной всему огромная сила гравитации, еще более удивительный факт, все процессы, происходящие в самой дыре, имеют невероятную скорость. Допустим, если наблюдать за тем как выглядит черная дыра в космосе, находясь за границами всепоглощающей массы, кажется, что все стоит на месте. Однако стоит только попасть внутрь объекту, его в мгновение бы разорвало. Сегодня нам показывают, как выглядит черная дыра в космосе фото, смоделированное специальными программами.

Определение черной дыры?

Теперь мы знаем откуда берутся черные дыры в космосе. Но что в них еще особенного? Сказать, что черная дыра – это планета или звезда невозможно априори, потому что это тело не газовое и не твердое. Это объект, который способен искажать не только ширину, длину и высоту, но и временную шкалу. Что совершенно не поддается физическим законам. Ученые утверждают, что время в районе горизонта пространственной единицы может двигаться вперед и назад. Что находится в черной дыре в космосе невозможно себе представить, световые кванты, попадающие туда, умножаются в несколько раз на массу сингулярности, этот процесс увеличивает мощь гравитационной силы. Поэтому, если взять с собой фонарик и отправиться черную дыру, светиться он не будет. Сингулярность – точка, в которой все стремится к бесконечности.

Структура черной дыры – это сингулярность и горизонт событий. Внутри сингулярности физические теории полностью теряют свой смысл, поэтому до сих пор она остается загадкой для ученых. Пересекая границу (горизонт событий), физический объект теряет возможность вернуться. Мы знаем далеко не все о черных дырах в космосе, но интерес к ним не угасает.

https://youtube.com/watch?v=yEv2CMt99X0

Как получилось, что в центре крупных галактик встречаются чёрные дыры?

Из множества миллиардов галактик, составляющих наблюдаемую Вселенную, более миллиона уже были проанализированы. В центрах многих крупных галактик присутствуют чёрные дыры. Как так вышло? Чтобы понять это, нужно вернуться к самому началу — к Большому взрыву. Материя и энергия вырываются наружу и Вселенная начинает расширяться. Именно Большой взрыв даёт нам все компоненты для рождения: водород, гелий и другие элементы.

В течение десятков миллионов лет облака водорода сливались, становясь всё плотнее. Некоторые становятся такими горячими, что воспламеняются. Рождаются первые звёзды — гиганты, размером в сотни раз превышающие наше Солнце. Они быстро выгорают и взрываются, образуя вспышку сверхновой. Более крупные галактики поглощают более малые галактики, и если одна галактика съедает другую, в центре которой была чёрная дыра, значит она съедает и эту чёрную дыру. Она перемещается в центр новой галактики, делая её больше.

Как образуются чёрные дыры

Такие большие объекты, как звёзды, обладают большой гравитацией. Вся материя звезды всегда притягивается к центру, но термоядерные реакции не позволяют ей схлопнуться. То есть с одной стороны работает притяжение, а с другой давление, которое удерживает форму звезды.

Самой популярной считается теория, что чёрная дыра — это конечная стадия жизни звезды с очень большой массой, превышающей как минимум массу 20 Солнц. Когда внутри такой звезды прекращаются термоядерные реакции (заканчивается топливо), то под действием своей огромной гравитации она ускоренно сжимается в нейтронную звезду. В зависимости от своей начальной массы, она может остаться сверхплотной нейтронной звездой либо продолжить сжиматься с такой силой, что даже свет не сможет покинуть её пределы — это и будет чёрная дыра.

Рекомендуем: Что такое магнитная буря

Существует и другой сценарий, когда все те же процессы происходят с межзвёздным газом, находящимся на стадии превращения в галактику или какое-то скопление. Если внутреннее давление не может компенсировать гравитацию, то вся материя начинает сжиматься, что приводит к образованию чёрной дыры.

Что такое черная дыра

Черная дыра — это область внутри космоса с настолько сильной гравитацией, что она засасывает все вокруг, включая свет. Профессор РАН Сергей Попов объясняет, что у черных дыр нет одного четкого определения, и даже такое — это один из вариантов. Если спросить разных ученых — астрофизиков и физиков — они подойдут к ответу с разных сторон. Есть энциклопедические словари, которые закрепляют определения и дают конкретные ответы, но единственно верной формулировки не существует.

Лекция Сергея Попова о черных дырах на YouTube

Сам Сергей определяет черные дыры как максимально компактный объект, который не демонстрирует свойств поверхности. И размер этого объекта соответствует радиусу Шварцшильда — расстоянию от центра тела до горизонта событий. Где горизонт событий — это «точка невозврата» или граница черной дыры. Для каждого объекта существует свой радиус Шварцшильда, который можно рассчитать. Если сжать любой предмет до этого радиуса, он превратится в черную дыру. Условно говоря, если бы мы хотели сжать Солнце и трансформировать его в черную дыру, его радиус составил бы всего 3 км, при изначальных около 700 тыс. км.

Футурология

Космонавты опять сняли НЛО: объясняем самые известные снимки из космоса

Само словосочетание «черная дыра» — это просто удачно придуманное обозначение. Примерно как «Большой взрыв». Сама идея черных дыр возникла в конце XVIII века. Тогда их называли по-другому: были варианты «застывшие звезды» или «коллапсары». Но в итоге научная журналистка Энн Юинг предложила такой термин.

Визуализация черной дыры

(Фото: NASA)

Сергей рассказывает, что в науке часто приживается какое-то словосочетание именно благодаря тому, что оно удобное. Дыра — потому что, если что-то туда попало, то не может выбраться назад. А черная — потому, что сам по себе этот объект ничего или практически ничего не излучает. Если представить пустую Вселенную, черный космос, и поместить там черную дыру, то ее невозможно будет увидеть. Она ничем не выделяется на фоне этой черноты.

Что такое сингулярность

В 1916 году немецкий астроном Карл Шварцшильд, прочитав только что опубликованную работу Эйнштейна, решил так преобразовать уравнения общей теории относительности, чтобы с их помощью можно было бы описать гравитационное поле звезды, то есть поле тяжести вне некоторого сферического тела. Лишь бы только это тело не вращалось. Шварцшильд получил выражение для той критической величины, вблизи которой поле тяжести можно назвать сверхсильным.

Случайно математическое выражение этой величины оказалось в точности таким, какое получил Лаплас для радиуса своей гипотетической невидимой звезды. И тогда выяснилась странная вещь. В уравнении оказалась, как говорят математики, сингулярность. То есть область, в которой поле тяжести обращается в бесконечность.

В обычной ньютоновской формуле закона всемирного тяготения тоже есть сингулярность. Если расстояние между двумя телами равно нулю, то и в ньютоновской теории сила притяжения таких тел друг к другу равна бесконечности. Но эта сингулярность никому не мешает – в природе не может реализоваться случай, когда расстояние между телами точно равно нулю!

А Шварцшильд в рамках общей теории относительности нашел, что сила тяжести становится бесконечно большой при конечном, не равном нулю, расстоянии. Достаточно сжать звезду до некоторого критического размера, и сила тяжести на поверхности такой звезды станет бесконечно большой. Этот критический радиус и был назван гравитационным радиусом, или радиусом Шварцшильда.

Гравитационный радиус – та граница, с приближением к которой эффекты общей теории относительности неограниченно нарастают.

Переменной величиной в формуле радиуса Шварцшильда является только масса звезды. Чем больше масса звезды, тем больше ее гравитационный радиус. Гравитационный радиус Солнца равен 3 км. Запомните эту цифру – достаточно знать массу звезды, выраженную в массах Солнца, и мы, умножив массу на три, получим величину гравитационного радиуса звезды в км.

Так вот, если радиус звезды ненамного больше гравитационного, то поле тяжести сверхсильно.

Радиус Солнца больше гравитационного в 200 тысяч раз, и эффекты общей теории относительности очень малы, поле тяжести Солнца хорошо описывается ньютоновской теорией (эффекты малы, но все же измеримы – ведь измерено же отклонение луча света в поле тяготения Солнца!).

А вот радиус нейтронной звезды всего 10 км-в 2-3 раза больше гравитационного. Сила тяжести очень велика, без общей теории относительности не обойтись. Какова же этв плотность? Её не сложно рассчитать: сожмем в воображении Солнце до размеров его гравитационного радиуса – 3 км. Разделим массу Солнца, на объем шара радиусом 3 км и получим, что плотность такого шара равна 2 x 1016 г/см3. Если сказать проще: 20 миллиардов тонн в 1 кубическом сантиметре.

Очень много, невероятно много… но не бесконечно много! А сила тяжести на поверхности такой звезды именно бесконечна. И значит, никакое газовое давление в принципе не удержит в равновесии звезду, радиус которой равен радиусу Шварцшильда. Сила тяжести не будет ничем уравновешена. И вещество звезды под действием тяжести начнет падать… падать… падать…

Задача, которую решил Шварцшильд, долго казалась астрономам чисто академической, не имеющей отношения к реальным небесным явлениям, хотя объекты, о которых шла речь у Шварцшильда, и назывались звездами. Больший интерес к этой задаче проявляли физики, но и их в астрономии больше интересовала важная, но чисто физическая проблема источников звездной энергии. Один из пионеров таких исследований – замечательный советский физик Лев Давидович Ландау.

Советский физик Лев Давидович Ландау

Первая заметка Ландау появилась в 1932 году – еще до сообщения об открытии нейтрона. Называлась она “К теории звезд”. Ландау поставил вопрос: какой может быть масса звезды, состоящей из вырожденного ферми-газа? Чандрасекар поставил тот же вопрос раньше и ответил на него. Но Ландау пошел дальше. Он писал: “При М > Мо во всей квантовой теории не существует причины, которая предотвратила бы коллапс системы в точку”.

Именно то, о чем мы только что говорили!

Теория, не доказанная практикой

К сожалению, технологии человечества на данном этапе развития не позволяют нам проверить большинство теорий, разработанных астрофизиками и другими учеными. С одной стороны, существование черных дыр довольно убедительно доказано на бумаге и выведено с помощью формул, в которых все сошлось с каждой переменной. С другой, на практике нам пока не удалось увидеть воочию настоящую черную дыру.

https://youtube.com/watch?v=9LBZJqYqTD0

Несмотря на все разногласия, физики предполагают, что в центре каждой из галактик находится сверхмассивная черная дыра, которая собирает своей гравитацией звезды в скопления и заставляет путешествовать по Вселенной большой и дружной компанией. В нашей галактике Млечный путь по разным оценкам насчитывается от 200 до 400 миллиардов звезд. Все эти звезды вращаются вокруг чего-то, что обладает огромной массой, вокруг чего-то, что мы не можем увидеть в телескоп. С большой долей вероятности это черная дыра. Стоит ли ее бояться? – Нет, по-крайней мере не в ближайшие несколько миллиардов лет, но мы можем снять про нее еще один интересный фильм.