Уровни организации живой природы

Уровни организации живой природы

Иерархичность организации живой материи позволяет условно подразделить ее на ряд уровней.
Уровень организации живой материи
это функциональное место биологической структуры определенной степени сложности в общей иерархии живого. Выделяют следующие уровни организации живой материи: молекулярный, субклеточный, клеточный, органно-тканевой, организменный, популяционно-видовой, биоценотический, биогеоценотический, биосферный.

1. Молекулярный (молекулярно-генетический).
На этом уровне живая материя организуется в сложные высокомолекулярные органические соединения, такие, как белки, нуклеиновые кислоты и др.

2. Субклеточный (надмолекулярный).
На этом уровне живая материя организуется в органоиды: хромосомы, клеточную мембрану, эндоплазматическую сеть, митохондрии, комплекс Гольджи, лизосомы, рибосомы и другие субклеточные структуры.

3. Клеточный. На этом уровне живая материя представлена клетками. Клетка является элементарной структурной и функциональной единицей живого.

4. Органно-тканевой. На этом уровне живая материя организуется в ткани и органы. Ткань – совокупность клеток, сходных по строению и функциям, а также связанных с ними межклеточных веществ. Орган – часть многоклеточного организма, выполняющая определенную функцию или функции.

5. Организменный (онтогенетический).
На этом уровне живая материя представлена организмами. Организм (особь, индивид) – неделимая единица жизни, ее реальный носитель, характеризующийся всеми ее признаками.

6. Популяционно-видовой.
На этом уровне живая материя организуется в популяции. Популяция – совокупность особей одного вида, образующих обособленную генетическую систему, которая длительно существует в определенной части ареала относительно обособленно от других совокупностей того же вида. Вид – совокупность особей (популяций особей), способных к скрещиванию с образованием плодовитого потомства и занимающих в природе определенную область (ареал).

7. Биоценотический.
На этом уровне живая материя образует биоценозы. Биоценоз – совокупность популяций разных видов, обитающих на определенной территории.

8. Биогеоценотический. На этом уровне живая материя формирует биогеоценозы. Биогеоценоз – совокупность биоценоза и абиотических факторов среды обитания (климат, почва).

9. Биосферный. На этом уровне живая материя формирует биосферу. Биосфера – оболочка Земли, преобразованная деятельностью живых организмов.

Необходимо отметить, что биогеоценотический и биосферный уровни организации живой материи выделяют не всегда, поскольку они представлены биокосными системами, включающими не только живое вещество, но и неживое. Также часто не выделяют субклеточный и органно-тканевой уровни, включая их в клеточный и организменный соответственно.

Предсказать свойства каждого следующего уровня на основе свойств предыдущих уровней невозможно так же, как нельзя предсказать свойства воды, исходя из свойств кислорода и водорода. Такое явление носит название эмерджентность, то есть наличие у системы особых, качественно новых свойств, не присущих сумме свойств ее отдельных элементов. С другой стороны, знание особенностей отдельных составляющих системы значительно облегчает ее изучение. Таким образом, в науке вообще, и в экологии в частности, целесообразно оптимальное сочетание двух подходов к познанию окружающего мира – анализа и синтеза. Анализ –
расчленение объекта на отдельные составляющие его элементы и их последующее изучение. Синтез – исследование объекта в целом.

Предыдущие материалы:

  • Живое вещество. Признаки живой материи
  • Педосфера
  • Литосфера и внутреннее строение Земли
  • Гидросфера
  • Атмосфера
Следующие материалы:

  • Химический состав живого вещества
  • Систематика живых организмов
  • Типы питания живых организмов
  • Метаболизм живых организмов
  • Экологическая характеристика основных систематических групп организмов

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к
профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас

Бесплатные
корректировки и доработки. Узнайте стоимость своей работы.

Расчет
стоимостиГарантииОтзывы

Правила экологической пирамиды

На каждом последующем уровне продукция примерно в 10 раз меньше предыдущего. Это правило экологических пирамид в 1927 году объявил зоолог Чарлз Элтон для отображения экологической структуры. Структурой для построения экологических пирамид служат пищевые цепи. Чарлз Элтон разработал графическую модель в форме пирамиды, основание которой занимают продуценты. Объем каждого верхнего этажа по сравнению с предыдущим уменьшается. Над уровнем продуцентов залегает уровень консументов I порядка. Выше находятся консументы остальных порядков. 

Позже эколог Р. Линдеман в 1942 году вывел правило 10%: на каждый следующий более высокий трофический уровень переходит около 10% энергии предыдущего уровня. 90% энергии при переносе ее от звена к звену рассеивается в виде тепла. Поэтому, в связи с колоссальной потерей энергии, количество трофических уровней ограничено и не превышает четырех-пяти звеньев. Чем дальше от начала располагаются звенья цепи, тем меньше энергии достается следующим трофическим уровням.

Энергия (C) тратится на разнообразные процессы жизнедеятельности организмов. Часть идет на построение клеток, а именно на прирост (P). Часть расходуется на прохождение энергетического обмена (R) и на процесс дыхания (i). Некоторая часть энергии выводится из организма в качестве неусвояемых продуктов жизнедеятельности (F). Следовательно, общее количество энергии будет складываться из отдельных составляющих:

C = P + R + F

Очевидно, что не все слагаемые будут переходить на следующий трофический уровень. Например, энергия, затраченная на дыхание, уходит из экосистемы. Таким образом, каждый последующий уровень всегда будет получать меньше энергии, чем первоначально содержится в предыдущем.  

Правило 10% (принцип Линдемана) – основной закон пирамиды энергии.

Типы экологических пирамид:

  • пирамида чисел (численностей) – отражает численность отдельных организмов по трофическим цепям, показывая уменьшение числа особей от продуцентов к редуцентам. Например, чтобы прокормить одного волка, нужно несколько кроликов; чтобы прокормить этих кроликов, нужно большое численное многообразие растений;
  • пирамида биомасс — показывает соотношение продуцентов, консументов и редуцентов в экосистеме, выраженное в их массе. Обычно каждый последующий уровень по массе в 10 раз меньше, чем предыдущий;
  • пирамида энергии — отражает силу потока энергии через последовательные трофические уровни, т.е. эта пирамида отражает скорость прохождения массы пищи через трофическую цепь. Таким образом, структура биоценоза зависит главным образом не от количества фиксированной энергии, а от скорости продуцирования пищи.

Экологическая пирамида может быть перевернута основанием вверх, то есть предыдущие уровни могут иметь меньшую плотность и биомассу, чем последующие. Основным фактором для этого служит высокая скорость воспроизводства популяции жертвы. Например, множество насекомых, обитающих на одном дереве.

Основные биосистемы

Основными типами биосистем является клетка, организм, популяция, вид, экосистема и биосфера.

Клетка — биологическая система с наименьшими размерами и простой структурой. Основными компонентами клетки является поверхностный аппарат, цитоплазма и ядро ​​(нуклеоид), построенные из молекул химических веществ и их соединений. Клетки являются основными элементами строения и жизнедеятельности всех живых организмов нашей планеты.

Организм — биологическая система, которая построена из клеток и благодаря системам регуляции и приспособительным механизмам может относительно самостоятельно существовать в определенной среде. Организмы делятся на одноклеточные, колониальные и многоклеточные. Именно эти биосистемы является самыми разнообразными формами живой природы.

Популяция — биологическая система из свободно скрещивающихся между собой организмов одного вида, проживающих длительное время на определенной территории и относительно изолированных от других таких же групп. Компонентами популяций является организмы, а сами популяции является структурной единицей видов. На уровне популяций начинаются эволюционные процессы, поэтому популяции являются элементарными единицами эволюции.

Вид — биологическая система из совокупности популяций, которым свойственны:

  • морфофизиологической сходство;
  • свободное внутривидовой скрещивания;
  • образование плодовитого потомства;
  • нескрещиваемость с другими видами;
  • общая территория обитания — ареал;
  • приспособленность к условиям существования в пределах ареала;
  • общее происхождение.

Вид является основной формой организации жизни.

Экосистема — совокупность различных видов и среды их обитания, связанных обменом веществ, энергии и информации. В рамках биосистем этого ранга выделяют биотический (биоценоз) и абиотических (биотоп) компоненты, которые связаны между собой круговоротом веществ. Экосистемы существуют вследствие распределения функций между продуцентами, консументами и редуцентами.

Биосфера — биосистема высокого порядка, состав, структура и свойства которой определяются функционированием живых организмов. Это единственная глобальная экосистема Земли. Живой и неживой компоненты биосферы связаны между собой круговоротом веществ в виде биогеохимических циклов.

Итак, биологическая система — это совокупность взаимосвязанных компонентов, деятельность которых определяют их единство и существование в пространстве и времени.

Основные виды экосистем

Экологические системы имеют неопределенные размеры. Они способны существовать на небольшом пространстве, например под камнем, гниющем пне дерева или в небольшом озере, а также занимать значительные территории (как весь тропический лес). С технической точки зрения, нашу планету можно назвать одной огромной экосистемой.

Схема небольшой экосистемы гниющего пня

Виды экосистем в зависимости от масштаба:

  • Микроэкосистема — экосистема небольшого масштаба, как пруд, лужа, пень дерева и т.д.
  • Мезоэкосистема — экосистема, такая, как лес или большое озеро.
  • Биом. Очень большая экосистема или совокупность экосистем с аналогичными биотическими и абиотическими факторами, такими как целый тропический лес с миллионами животных и деревьев, и множеством различных водных объектов.

Границы экосистем не обозначены четкими линиями. Их часто разделяют географические барьеры, такие как пустыни, горы, океаны, озера и реки. Поскольку границы не являются строго установленными, экосистемы, как правило, сливаются друг с другом. Вот почему озеро может иметь множество небольших экосистем со своими собственными уникальными характеристиками. Ученые называют такое смешивание «Экотон».

Виды экосистем по типу возникновения:

Помимо вышеперечисленных видов экосистем, существует также разделение на естественные и искусственные экологические системы. Естественная экосистема создается природой (лес, озеро, степь и т.д.), а искусственная — человеком (сад, приусадебный участок, парк, поле и др.).

1.3. Уровни организации живой природы

Уровни организации живых систем  отражают соподчиненность, иерархичность структурной организации жизни; отличаются друг от друга сложностью организации системы (клетка устроена проще по сравнению с многоклеточным организмом или популяцией).

Уровень жизни – это форма и способ ее существования (вирус существует в виде молекулы ДНК или РНК, заключенной в белковую оболочку – форма существования вируса. Однако свойства живой системы вирус проявляет, только попав в клетку другого организма, где он размножается – способ его существования).

  Уровни организации Биологи-ческая система Компоненты, образующие систему Основные процессы
1.Молекулярно-генетический уровень    Молекула Отдельные биополимеры (ДНК, РНК, белки, липиды, углеводы и др.); На этом уровне жизни изучаются явления, связанные с изменениями (мутациями) и воспроизведением генетического материала, обменом веществ.
2.Клеточный Клетка Комплексы молекул химических соединений и органоиды клетки Синтез специфических органических веществ; регуляция химических реакций; деление клеток; вовлечение химических элементов Земли и энергии Солнца в биосистемы
3.Тканевый Ткань Клетки и межклеточное вещество Обмен веществ; раздражимость
4.Органный Орган Ткани разных типов Пищеварение; газообмен; транспорт веществ; движение и др.
5. Организменный Организм Системы органов Обмен веществ; раздражимость; размножение; онтогенез. Нервно-гуморальная регуляция процессов жизнедеятельности. Обеспечение гармоничного соответствия организма его среде обитания
6. Популяционно-видовой Популяция Группы родственных особей, объединенных определенным генофондом и специфическим взаимо-действием с окружающей средой Генетическое своеобразие; взаимодействие между особями и популяциями; накопление элементарных эволюционных преобразований; выработка адаптации к меняющимся условиям среды
7.Биогеоцено-тический Биогеоценоз Популяции разных видов; факторы среды; пространство с комплексом условий среды обитания Биологический круговорот веществ и поток энергии, поддерживающие жизнь; подвижное равновесие между живым населением и абиотической средой; обеспечение живого населения условиями обитания и ресурсами
8.Биосферный Биосфера Биогеоценозы и антропогенное воздействие Активное взаимодействие живого и неживого (косного) вещества планеты; биологический глобальный круговорот; активное биогеохимическое участие человека во всех процессах биосферы

Часть А

А1. Уровень, на котором изучаются процессы биогенной миграции атомов, называется:

1) биогеоценотический      2) биосферный3) популяционно-видовой     

4) молекулярно-генетический

А2. На популяционно-видовом уровне изучают:

1) мутации генов2) взаимосвязи организмов одного вида3) системы органов      

4) процессы обмена веществ в организме

А3. Поддержание относительного постоянства химического состава организма называется

1) метаболизм 2) ассимиляция 3) гомеостаз

4) адаптация

А4. Возникновение мутаций связано с таким свойством организма, как

1) наследственность  2) изменчивость   3) раздражимость

4) самовоспроизведение          

А5. Какая из перечисленных биологических систем образует наиболее высокий уровень жизни?

1) клетка амебы 2) вирус оспы 3) стадо оленей 

4) природный заповедник

А6. Отдергивание руки от горячего предмета – это пример

1) раздражимости                                        2) способности к адаптациям3) наследования признаков от родителей  

4) саморегуляции

А7. Фотосинтез, биосинтез белков – это примеры

1) пластического обмена веществ   2) энергетического обмена веществ3) питания и дыхания                     

4) гомеостаза

А8. Какой из терминов является синонимом понятия «обмен веществ»?

1) анаболизм  2) катаболизм 3) ассимиляция 

4) метаболизм

Часть В

В1. Выберите процессы, изучаемые на молекулярно-генетическом уровне жизни:

1) репликация ДНК                            2) наследование болезни Дауна3) ферментативные реакции               4) строение митохондрий5) структура клеточной мембраны   

6) кровообращение

В2. Соотнесите характер адаптации организмов с условиями, к которым они вырабатывались

Часть  С

С1. Какие приспособления растений обеспечивают им размножение и расселение?

С2. Что общего и в чем заключаются различия между разными уровнями организации жизни?

Уровни организации живой материи. Методы биологии

Организмы одного вида живут в природе не изолированно друг от друга. Обычно они объединены в популяции — совокупности особей одного вида, населяющих одно местообитание. Вид обычно состоит из множества популяций. Таким образом выделяют популяционно-видовой уровень организации живой материи. Именно в популяциях происходит половое размножение, накопление генетического разнообразия и элементарные эволюционные процессы, приводящие в конечном итоге к видообразованию.

Т. е. эволюция жизни на Земле возможна только на надорганизменном уровне.

На биогеоценотическом (экосистемном) уровне происходит объединение популяций разных видов, но обитающих на одной территории. Эти популяции взаимосвязаны пищевыми цепями, потоком энергии, созданием друг для друга условий обитания.

Биогеоценоз — элементарная единица этого уровня, для которого характерны такие явления как поток энергии и круговорот веществ.

Все биоценозы Земли составляют последний наивысший уровень организации жизни — биосферный. Элементарная единица — биосфера (причем только одна единственная). На этом уровне происходят глобальные круговороты веществ и превращения энергии, объединяющие все экосистемы в единое целое.

Одноклеточные и многоклеточные

Все организмы по своей структуре делятся на два типа:

  • одноклеточные – состоят из одной клетки;
  • многоклеточные – состоят из множества взаимосвязанных клеток.

Одноклеточные организмы ограничены оболочкой, под которой находится цитоплазма с органоидами – функциональными частицами клеток. Одноклеточные организмы схожи по строению и функциям с клетками многоклеточных организмов. Однако могут самостоятельно существовать, выполняя функции целого организма.

Представители одноклеточных организмов:

ТОП-1 статья

которые читают вместе с этой

  • растения (эукариоты) – хламидомонада, хлорелла, эвглена зеленая;
  • животные (эукариоты) – амёба, инфузории;
  • грибы (эукариоты) – дрожжи;
  • бактерии (прокариоты) – кишечная палочка, кокки.

Рис. 2. Одноклеточные организмы.

Многоклеточные – более сложно организованные организмы. Наиболее примитивные – губки, самые сложные – млекопитающие.

Рис. 3. Многоклеточные организмы.

В отличие от одноклеточных многоклеточные организмы имеют больше уровней организации. Клетки в многоклеточном организме специализированы и выполняют определенные функции, образуя ткани и органы. Однако вне зависимости от сложности строения все организмы взаимодействуют с окружающей средой и являются частью более сложных уровней организации живой материи (популяций, экосистем, биосферы).

Таблица этапов развития

Любой сложный или простой организм на начальном уровне состоит из молекулярных соединений. В биологии эти компоненты называют макромолекулярными веществами. Рассмотреть кратко этапы развития живой материи можно в табличном формате.

Таблица организации уровней живой природы и основные процессы:

Порядок организации Система Входящие компоненты Особенности и основные процессы
1. Молекулярно-генетический Молекулы Углеводы, белки, ДНК (дезоксирибонуклеиновая кислота), липиды, РНК (рибонуклеиновая кислота), комплекс неорганических и органических веществ. Мутации и воспроизведение генетической материи.
2. Клеточный Клетка Химические соединения, молекулы, эритроциты. Бактерии синезеленые, одноклеточные водоросли, простейшие Происходит синтезирование органических веществ, клеточное деление, энергетический обмен между химическими элементами, участвующими в биосистеме.
3. Тканевый Клеточная ткань Межклеточная субстанция и клетки Обменные процессы, реакция на раздражение.
4. Органный Органы, система пищеварения, кровообращения и дыхания Тканевая структура органов Пищеварительные реакции, транспортировка питательных веществ.
5. Организменный Система организма Структуры органов. Растения (хлорелла, хламидомонада), животные одноклеточного типа (инфузории, амёбы). Обменные процессы, онтогенез, гармонизация организма со средой обитания. Нервная и гуморальная реакция организма.
6. Популяционно-видовой Группы особей Собрание одного вида особей, содержащих один набор генов и взаимодействующих одинаковым способом с окружающей средой. Уникальный генетический набор, взаимодействие с другими популяциями и особями. Эволюционные преобразования, развитие адаптации к изменениям места обитания.
7. Биогеоценотический Системы разных организмов Включает разные популяции и совокупность абиотических факторов, ограниченных одной территорией. Цепочка веществ и энергии в биологической среде, установление баланса между населением и факторами среды, обеспечение условий и ресурсов для жизнедеятельности населения.
8. Биосферный Биосфера Связь биогеоценозов, антропогенные явления. Взаимосвязь биокосных веществ, образованных в результате жизнедеятельности живой материи и косных веществ планеты (окружающей среды).

Предыдущая

БиологияВидоизменения побегов растений — особенности строения, функции и примеры

Следующая

БиологияЖизненный цикл голосеменных растений — классификация, особенности и этапы развития

Взаимосвязь уровней организации биосистем

Критерием для выделения уровней организации биосистем является степень сложности структуры, то есть расположение взаимосвязанных компонентов. Для характеристики уровней организации жизни применяют еще и такой критерий, как процесс (от лат. prōcēssus — перемещение, движение), что означает определенные закономерные функциональные изменения и явления. Выделять уровень организации целесообразно в том случае, если на нем возникают новые (эмергентные) свойства, при том, что их нет в системах более низкого уровня.

Представление о структурных уровнях организации сложилось в 20-х годах XX в. (Л. фон Берталанфи, Г. Ч. Браун), а в середине 40-х годов XX в. сформировалась теория уровней организации (Р. Джерард, А. Эмерсон) как конкретное выражение упорядоченности живого.

Как вы уже знаете, различают молекулярный, клеточный, организменный, популяционно-видовой, экосистемный (биогеоценотический) и биосферный уровни организации биосистем. При необходимости, которая определяется особенностями изучаемого объекта, можно выделять дополнительные уровни: тканевый, уровень органов, уровень систем органов, биоценотический уровень.

Молекулярный уровень жизни связан с организацией специфических для живых организмов органических соединений, их взаимодействием между собой и с неорганическими веществами. При этом происходят химические реакции и физические процессы преобразования энергии, веществ и информации. На молекулярном уровне организации находятся бесклеточные (вирусы, прионы, вироиды).

Клеточный уровень жизни представлен свободноживущими одноклеточными организмами и клетками многоклеточных организмов. Компонентами структуры клеток является вещества и их комплексы. На клеточном уровне происходят процессы разделения и передачи информации, стероидов и катаболизма.

Организменный уровень жизни определяется клетками у одноклеточных и колониальных организмов; тканями, органами и системами органов — у многоклеточных организмов. Элементарной единицей уровня являются отдельные клеточные организмы с определенными особенностями строения, жизнедеятельности (питание, дыхание, выделение, размножение и т.д.) и поведения.

Популяционно-видовой уровень жизни представлен популяциями и видами, которые являются надорганизменными биологическими системами. Структурными компонентами являются группы родственных особей, объединенные определенным генофондом и специфическим взаимодействием с окружающей средой. На этом уровне формируются микро-эволюционные процессы адаптациогенеза, регуляции численности популяций, видообразования и тому подобное.

Экосистемный (биогеоценотический) уровень жизни представлен разнообразием природных и искусственных экосистем. Компонентами являются живые группировки (биоценозы) и условия среды обитания. На этом уровне осуществляются взаимодействие организмов разных популяций между собой, а также влияние экологических факторов, определяющих их численность, видовой состав и производительность.

Биосферный уровень жизни объединяет все экосистемы Земли. На этом уровне происходят биогенная миграция живого вещества, биологический круговорот веществ и превращения энергии.

Основой взаимосвязи всех уровней организации биосистем является потоки веществ, энергии и информации и принцип структурной иерархии систем, согласно которому любая биосистема является компонентом биосистемы высшего ранга, и, в свою очередь, состоит из подчиненных ей биосистем низшего ранга.

Итак, уровни организации биосистем — это определенный тип взаимодействия структурных и функциональных компонентов биологических систем.

Молекулярный уровень

Хотя молекулы состоят из атомов, отличие живой материи от неживой начинает проявляться только на уровне молекул.

Только в состав живых организмов входит большое количество сложных органических веществ – биополимеров (белков, жиров, углеводов, нуклеиновых кислот).

Однако молекулярный уровень организации живого включает и неорганические молекулы, входящие в клетки и играющие важную роль в их жизнедеятельности.

Функционирование биологических молекул лежит в основе живой системы. На молекулярном уровне жизни проявляется обмен веществ и превращение энергии как химические реакции, передача и изменение наследственной информации (редупликация и мутации), а также ряд других клеточных процессов.

Иногда молекулярный уровень называют молекулярно-генетическим.