Основы строения атома. просто о сложном

Открытие нейтрона

При бомбардировке бериллия α-частицами, испускаемыми нестабильным полонием, возникает сильное проникающее излучение, которое легко преодолевает преграду в виде слоя свинца толщиной до 10–20 см. Это излучение изучали английский физик Чедвик и супруги Жолио-Кюри Ирен и Фредерик из Франции независимо друг от друга примерно в одно и то же время. Ученые предположили, что это излучение создано γ-лучами большой энергии. Но затем выяснилось, что если на пути излучения бериллия поставить пластинку из парафина, то ионизирующая способность излучения резко возрастает.

Было установлено, что излучение бериллия выбивает из парафиновой пластинки протоны, которые в большом количестве имеются в этом веществе. Ученые рассчитали длину свободного пробега протонов в воздухе они оценили энергию γ-квантов, которые сообщают при столкновении с протонами необходимую скорость. Расчеты показали слишком большое значение — 50 МэВ. протонам необходимую скорость. Она оказалась огромной – порядка 50 МэВ. Из-за малой массы γ-кванты не могли обладать такой энергией. Поэтому Чедвик сделал вывод, что из бериллия под действием α-частиц вылетают не безмассовые γ-кванты, а довольно тяжелые частицы. Эти частицы обладали большой проникающей способностью и не ионизировали газ в счетчике Гейгера. Это значит, что такие частицы были электрически нейтральными. Этой частице дали название — нейтрон.

Функции ядер

Центральное ядро процессора выполняет 2 основных типа задач:

  • внутрисистемные;
  • пользовательские.

В первую категорию стоит отнести задачи по организации вычислений, загрузке интернет-страниц и обработке прерываний.

Во вторую же попадают функции поддержки приложений путем использования программной среды. Собственно, прикладное программирование как раз и построено на том, чтобы нагрузить ЦП задачами, которые он будет выполнять. Цель разработчика – настроить приоритеты выполнения той или иной процедуры.

Современные ОС позволяют грамотно задействовать все ядра процессора, что дает максимальную продуктивность системы. Из этого стоит отметить банальный, но логичный факт: чем больше физических ядер на процессоре, тем быстрее и стабильней будет работать ваш ПК.

Методы описания атомного ядра

Не­смот­ря на то что Я. а. от­кры­то бо­лее 100 лет на­зад, его изу­че­ние ещё да­ле­ко от за­вер­ше­ния. Это свя­за­но с не­обы­чай­ной слож­но­стью строе­ния яд­ра, в ко­то­ром до 300 ну­кло­нов, так­же имею­щих слож­ную внутр. струк­ту­ру и раз­мер ок. 10–15 м, плот­но сжа­ты в про­стран­ст­ве раз­ме­ром ок. 10–14 м. В этом про­стран­ст­ве ну­кло­ны дви­га­ют­ся со ско­ро­стя­ми по­ряд­ка 0,2 c и ис­пы­ты­ва­ют са­мые силь­ные из из­вест­ных взаи­мо­дей­ст­вий. При тео­ре­тич. опи­са­нии Я. а. ис­поль­зу­ют­ся при­бли­жён­ные ме­то­ды ре­ше­ния за­да­чи мн. тел, ши­ро­ко рас­про­стра­нён фе­но­ме­но­ло­гич. под­ход, в ос­но­ве ко­то­ро­го ле­жат раз­ные ядер­ные мо­де­ли, от­ра­жаю­щие разл. свой­ст­ва Я. а. (под­роб­нее см. в ст. Ядер­ная фи­зи­ка). Обу­слов­ле­но это тем, что в раз­ных про­цес­сах Я. а. про­яв­ля­ет раз­лич­ные и на пер­вый взгляд не­со­вмес­ти­мые друг с дру­гом свой­ст­ва. Оно по­хо­же на газ (вы­ро­ж­ден­ный фер­ми-газ), и в то же вре­мя боль­шая плот­ность род­нит его с жид­ко­стью (с фер­ми-жид­ко­стью). В ря­де слу­ча­ев Я. а. про­яв­ля­ет свой­ст­ва, сбли­жаю­щие его и с плаз­мой, и с твёр­дым те­лом. В нём при­сут­ст­ву­ют как од­но­час­тич­ные воз­буж­де­ния, ха­рак­тер­ные для ато­мов, так и кол­лек­тив­ные, при­су­щие мо­ле­ку­лам и мак­ро­ско­пич. объ­ек­там. По­это­му в фи­зи­ке атом­но­го яд­ра час­то ис­поль­зу­ют­ся идеи из др. об­лас­тей фи­зи­ки (атом­ной и мо­ле­ку­ляр­ной фи­зи­ки, гид­ро­ди­на­ми­ки, фи­зи­ки твёр­до­го те­ла и эле­мен­тар­ных час­тиц). При этом ис­поль­зу­ет­ся раз­но­об­раз­ный тео­ре­тич. ап­па­рат – от клас­сич. элек­тро­ди­на­ми­ки и ста­ти­стич. фи­зи­ки до кван­то­вой ме­ха­ни­ки и кван­то­вой тео­рии по­ля.

Энергия связи нуклонов в ядре. Ядерные силы

Между нуклонами ядра действуют самые мощные силы природы – ядерные силы.

Ядерные силы – это силы притяжения, связывающие протоны и нейтроны в атомном ядре и обеспечивающие существование устойчивых ядер.

Свойства ядерных сил:

  • являются силами притяжения;
  • являются короткодействующими силами (действуют на малых расстояниях, не превышающих 2·10-15 м; на таком расстоянии ядерные силы больше кулоновских приблизительно в 100 раз);
  • обладают свойством зарядовой независимости (ядерные силы, действующие между двумя протонами, двумя нейтронами и между протоном и нейтроном, одинаковы);
  • имеют свойство насыщения (каждый нуклон взаимодействует только с ограниченным числом ближайших к нему нуклонов, а не со всеми нуклонами ядра);
  • не являются центральными (не действуют по линии, соединяющей центры взаимодействующих нуклонов).

Массу ядра можно точно определить с помощью масс-спектрографов, которые разделяют заряженные частицы с разными удельными зарядами с помощью электрических и магнитных полей.

Опытным путем было установлено, что благодаря действию сил притяжения масса ядра всегда меньше суммы масс протонов и масс нейтронов, входящих в состав этого ядра:

где ​\( M \)​ – масса ядра.

Дефект масс – это величина, равная разности суммы масс входящих в ядро нуклонов и массы ядра:

где ​\( \Delta m \)​ – дефект масс.

Благодаря ядерным силам ядра атомов обладают огромной энергией связи.

Энергия связи – это энергия, которую необходимо затратить, чтобы разделить ядро на составляющие его нуклоны, или энергия, которая выделяется при образовании ядра из отдельных нуклонов:

где ​\( \Delta E_{св} \)​ – энергия связи, ​\( c \)​ – скорость света.

Если в формуле энергии связи массы протона и нейтрона выражены в килограммах, а скорость света – в метрах в секунду, то энергия связи будет измерена в джоулях. Однако в физике атома и атомного ядра энергию ядер и элементарных частиц чаще выражают в мегаэлектронвольтах (МэВ).

Энергетический эквивалент 1 а.е.м.

Поэтому энергию связи можно рассчитать следующим образом:

В этом случае энергия связи измеряется в мегаэлектронвольтах (МэВ).

Для характеристики прочности ядра используется величина, которая называется удельной энергией связи.

Удельная энергия связи – это энергия связи ядра, приходящаяся на один нуклон ядра:

где ​\( A \)​ – массовое число.

Удельная энергия связи неодинакова для разных химических элементов и даже для изотопов одного и того же химического элемента. Удельная энергия связи нуклона в ядре меняется в среднем в пределах от 1 МэВ у легких ядер до 8,6 МэВ у ядер средней массы (с массовым числом ​\( A \)​ ≈ 100). У тяжелых ядер (​\( A \)​ ≈ 200) удельная энергия связи нуклона меньше, чем у ядер средней массы, приблизительно на 1 МэВ, так что их превращение в ядра среднего веса (деление на 2 части) сопровождается выделением энергии в количестве около 1 МэВ на нуклон, или около 200 МэВ на ядро. Превращение легких ядер в более тяжелые ядра дает еще больший энергетический выигрыш в расчете на нуклон.

Зависимость удельной энергии связи от массового числа установили экспериментально. Из рисунка хорошо видно, что, не считая самых легких ядер, удельная энергия связи примерно постоянна и равна 8 МэВ/нуклон. Отметим, что энергия связи электрона и ядра в атоме водорода, равная энергии ионизации, почти в миллион раз меньше этого значения. Кривая на рисунке имеет слабо выраженный максимум. Максимальную удельную энергию связи (8,6 МэВ/нуклон) имеют элементы с массовыми числами от 50 до 60, т. е. железо и близкие к нему по порядковому номеру элементы. Ядра этих элементов наиболее устойчивы.

У тяжелых ядер удельная энергия связи уменьшается за счет возрастающей с увеличением ​\( Z \)​ кулоновской энергии отталкивания протонов. Кулоновские силы стремятся разорвать ядро.

Свойства ядра

  1. Ядро — важная клеточная органелла, которая присутствует в эукариотической клетке.
  2. Впервые описано Робертом Брауном как клеточная органелла.
  3. Флемминг назвал её хроматином.
  4. Двухмембранная.
  5. Состоит из генетического материала. 
  6. Наличие ядра — одна из отличительных черт эукариотической клетки. 
  7. Вся клеточная деятельность направляется и координируется ядром.
  8. В прокариотической клетке истинное ядро ​​отсутствует.
  9. В случае эукариотической клетки ядро ​​присутствует во всех клетках, кроме эритроцитов и клеток ситовой трубки (флоэмы). 
  10. В разных типах клеток разное количество ядер. 
  11. Большинство клеток состоит только из одного типа ядер, в то время как некоторые из них состоят из двух ядер, то есть двухъядерных. 
  12. Многоядерная клетка состоит из двух и более ядер. Пример: слизистая плесень.
  13. Размер ядра 5-25 мкм. Это самые крупные органеллы. 
  14. Она занимает около 8% от общего объема ячейки.
  15. Ядро бывает разной формы: круглой, овальной, эллиптической или дольчатой.
  16. В животной клетке она находится в центре.
  17. В растительной клетке она присутствует на периферии. Это потому, что в центре находится большая вакуоль, заполненная водой.

Хромосомы

Хромосомы – это особые образования, которые возникают в ядре только во время деления. Хромосома состоит из двух плеч и центромеры. По форме их делят на:

  • Палочкообразные. Такие хромосомы имеют одно большое плечо, а другое маленькое.
  • Равноплечные. Имеют относительно одинаковые плечи.
  • Разноплечные. Плечи хромосомы зрительно отличаются между собой.
  • С вторичными перетяжками. У такой хромосомы имеется нецентромерная перетяжка, которая отделяет спутничный элемент от основной части.

У каждого вида количество хромосом всегда одинаково, но стоит отметить, что от их количества не зависит уровень организации организма. Так, у человека имеется 46 хромосом, у курицы — 78, у ежа — 96, а у березы — 84. Наибольшее число хромосом имеет папоротник Ophioglossum reticulatum. У него 1260 хромосом на каждую клетку. Наименьшее число хромосом имеет самец-муравей вида Myrmecia pilosula. У него только 1 хромосома.

Именно изучив хромосомы, ученые поняли, каковы функции ядра клетки.

В состав хромосом входят гены.

Гены – это участки молекул дезоксирибонуклеиновой кислоты (ДНК), в которых закодированы определенные составы молекул белка. В результате этого у организма проявляется тот или иной признак. Ген передается по наследству. Так, ядро в клетке выполняет функцию передачи генетического материала следующим поколениям клеток.

Структура ядра

Я. а. – сис­те­ма плот­но упа­ко­ван­ных ну­кло­нов, ср. рас­стоя­ние ме­ж­ду ко­то­ры­ми (1,5–2,0 фм) срав­ни­мо с раз­ме­ром ну­кло­на. Ну­кло­ны в яд­ре удер­жи­ва­ют­ся мощ­ны­ми и ко­рот­ко­дей­ст­вую­щи­ми ядер­ны­ми си­ла­ми при­тя­же­ния, яв­ляю­щи­ми­ся про­яв­ле­ни­ем бо­лее фун­дам. силь­но­го взаи­мо­дей­ст­вия ме­ж­ду квар­ка­ми и глюо­на­ми, из ко­то­рых со­сто­ят ну­кло­ны. Ну­клон-ну­клон­ное взаи­мо­дей­ст­вие внут­ри Я. а. реа­ли­зу­ет­ся пу­тём об­ме­на ме­зо­на­ми (пре­ж­де все­го π-ме­зо­на­ми), ко­то­рые, как и ну­кло­ны, яв­ля­ют­ся ад­ро­на­ми, т. е. со­сто­ят из квар­ков и глюо­нов. По­сле­до­ват. опи­са­ние та­ко­го взаи­мо­дей­ст­вия воз­мож­но в рам­ках кван­то­вой хро­мо­ди­на­ми­ки. Ре­ше­ние этой важ­ней­шей про­бле­мы ядер­ной фи­зи­ки ос­та­ёт­ся в по­ве­ст­ке дня ис­сле­до­ва­те­лей.

Для Я. а. с A⩾20 ср. плот­ность ну­кло­нов поч­ти не из­ме­ня­ет­ся, т. е. объ­ём яд­ра про­пор­цио­на­лен A, а его ра­ди­ус R пропор­цио­на­лен : . Кон­стан­та r ле­жит в пре­де­лах 1,0–1,2 фм. Плот­ность ве­ще­ст­ва мак­си­маль­на в цен­тре яд­ра и экс­по­нен­ци­аль­но спа­да­ет к его гра­ни­це, при­чём тол­щи­на по­верх­но­ст­но­го слоя, ха­рак­те­ри­зую­щая этот спад, прак­ти­че­ски оди­на­ко­ва у разл. ядер и со­став­ля­ет ок. 2,4 фм. Ср. плот­ность ядер­но­го ве­ще­ст­ва – ок. 1017 кг/м3.

[править] Общая характеристика строения атома

Современные представления о строении атома базируются на квантовой механике. На популярном уровне строение атома можно изложить в рамках волновой модели, которая опирается на модель Бора и дополнительные заявления квантовой механики.

  • Атомы состоят из элементарных частиц (протонов, электронов, и нейтронов). Масса атома в основном сосредоточена в ядре, поэтому большая часть объема относительно пуста. Ядро окружено электронами. Количество электронов равно количеству протонов в ядре, количество протонов определяет порядковый номер элемента в периодической системе. В нейтральном атоме суммарный отрицательный заряд электронов равен положительному заряду протонов. Атомы одного элемента с разным количеством нейтронов называются изотопами.
  • В центре атома находится крошечное, положительно заряженное ядро, состоящее из протонов и нейтронов.

Ядро атома примерно в 100 000 раз меньше, чем сам атом. Таким образом, если увеличить атом до размеров аэропорта Борисполь, размер ядра будет меньше размера шарика для настольного тенниса.

  • Ядро окружено электронным облаком, которое занимает большую часть его объема. В электронном облаке можно выделить оболочки, для каждой из которых существует несколько возможных орбиталей. Заполненные орбитали составляют электронную конфигурацию, характерную для каждого химического элемента.
  • Каждая орбиталь может содержать до двух электронов, характеризующихся тремя квантовыми числами: основным, орбитальным и магнитным.
  • Каждый электрон на орбитали имеет уникальное значение четвертого квантового числа: спина.

Орбитали определяются специфическим распределением вероятности того, где именно можно найти электрон. Примеры орбиталей и их обозначения приведены на рисунке справа. «Границей» орбитали считается расстояние, на котором вероятность того, что электрон может находиться вне ее, меньше 90 %.

  • Каждая оболочка может содержать не больше строго определенного числа электронов. Например, ближайшая к ядру оболочка может иметь максимум два электрона, следующая — 8, третья от ядра — 18.
  • Когда электроны присоединяются к атому, они занимают орбиталь с низкой энергией. Только электроны внешней оболочки могут участвовать в образовании межатомных связей. Атомы могут отдавать и присоединять электроны, становясь положительно или отрицательно заряженными ионами.
  • Химические свойства элемента определяются тем, с какой легкостью ядро ​​может отдавать или получать электроны. Это зависит как от числа электронов, так и от степени заполненности внешней оболочки.

Электронные оболочки и орбитали

Сложные атомы имеют десятки, а для очень тяжелых элементов, даже сотни электронов. Электронные состояния атомов формируются всеми электронами, и невозможно определить, где находится каждый из них. Однако, в так называемом одноэлектронном приближении, можно говорить об определенных энергетических состояниях отдельных электронов.

Согласно этим представлениям существует определенный набор орбиталей, которые заполняются электронами атома. Эти орбитали образуют определенную электронную конфигурацию. На каждой орбитали может находиться не более чем два электрона (принцип исключения Паули). Орбитали группируются в оболочки, каждая из которых может иметь лишь определенное фиксированное количество орбиталей (1, 4, 10 и т. д.). Орбитали разделяют на внутренние и внешние. В основном состоянии атома внутренние оболочки полностью заполнены электронами.

На внутренних орбиталях электроны сильно связаны с ядром. Чтобы вырвать электрон из внутренней орбитали, нужно предоставить ему большую энергию, до нескольких тысяч электрон-вольт. Такую энергию электрон на внутренней оболочке может получить только поглотив квант рентгеновского излучения. Энергии внутренних оболочек атомов индивидуальные для каждого химического элемента, а потому по спектру рентгеновского поглощения можно идентифицировать атом. Эту индивидуальность используют в некоторых методах рентгеновской спектроскопии, в частности в рентгенофлуоресцентном анализе, рентгеновской спектроскопии поглощения, рентгеновской фотоэлектронной спектроскопии.

На внешней оболочке электроны находятся на большем расстоянии от ядра и слабее связаны с ним. Именно эти электроны участвуют в формировании химических связей, поэтому внешнюю оболочку называют валентной, а электроны внешней оболочки — валентными электронами.

Ядра гало и пределы диапазона ядерных сил

Эффективный абсолютный предел диапазона ядерной силы (также известной как остаточная сильная сила ) представлен ядрами гало, такими как литий-11 или бор-14 , в которых динейтроны или другие совокупности нейтронов вращаются по орбите на расстояниях примерно10 фм (примерно какРадиус ядра урана-238 8 фм ). Эти ядра не являются максимально плотными. Ядра гало образуются на крайних краях диаграммы нуклидов — нейтронной и протонной — и все они нестабильны с короткими периодами полураспада, измеряемыми в миллисекундах ; например, литий-11 имеет период полураспада8,8 мс .

По сути, гало представляют собой возбужденное состояние с нуклонами на внешней квантовой оболочке, имеющей незаполненные энергетические уровни «ниже» (как по радиусу, так и по энергии). Гало может состоять из нейтронов или протонов . Ядра, которые имеют одно нейтронное гало, включают 11 Be и 19 C. Двухнейтронное гало проявляют 6 He, 11 Li, 17 B, 19 B и 22 C. Ядра с двумя нейтронами распадаются на три фрагмента, а не на два, и называются ядрами Борромео из-за этого поведения (имеется в виду система из трех взаимосвязанных колец, в которой разрыв одного кольца освобождает оба других). 8 He и 14 Be демонстрируют четырехнейтронное гало. Ядра, которые имеют протонный гало, включают 8 B и 26 P. Двухпротонное гало проявляется 17 Ne и 27 S. Ожидается, что протонные гало будут более редкими и нестабильными, чем примеры нейтронов, из-за отталкивающих электромагнитных сил избыток протона (ов).

Система обозначений ядер

Для обозначения атомных ядер используется следующая система:

  • в середине ставится символ химического элемента, что однозначно определяет зарядовое число Z{\displaystyle Z} ядра;
  • слева сверху от символа элемента ставится массовое число A{\displaystyle A}.

Таким образом, состав ядра оказывается полностью определён, так как N=A−Z{\displaystyle N=A-Z}.

Пример такого обозначения:

238U{\displaystyle {}^{238}{\textrm {U}}} — ядро урана-238, в котором 238 нуклонов, из которых 92 — протоны, так как элемент уран имеет 92-й номер в таблице Менделеева.

Иногда, однако, для полноты вокруг обозначения элемента указывают все характеризующие ядро его атома числа:

  • слева снизу — зарядовое число Z{\displaystyle Z}, то есть, то же самое, что указано символом элемента;
  • слева сверху — массовое число A{\displaystyle A};
  • справа снизу — изотопическое число N{\displaystyle N}[источник не указан 762 дня ()];
  • если речь идёт о ядерных изомерах, к массовому числу приписывается буква из последовательности m, n, p, q, … (иногда используют последовательность m1, m2, m3, …). Иногда эту букву указывают в качестве самостоятельного индекса справа сверху.

Примеры таких обозначений:

92238U{\displaystyle {}_{92}^{238}{\textrm {U}}}, 92238U146{\displaystyle {}_{92}^{238}{\textrm {U}}_{146}}, 92238mU{\displaystyle {}_{92}^{238m}{\textrm {U}}}, 92238Um{\displaystyle {}_{92}^{238}{\textrm {U}}^{m}}.

Следует особо отметить, что обозначения атомных ядер совпадают с таковыми для нуклидов.

По историческим и иным причинам, некоторые ядра имеют самостоятельные названия. Например, ядро 4He называется α-частицей, ядро дейтерия 2H (или D) — дейтроном, а ядро трития 3H (или T) — тритоном. Последние два ядра являются изотопами водорода и поэтому могут входить в состав молекул воды, давая в итоге так называемую тяжёлую воду.

Строение атома

Темы кодификатора ЕГЭ: Строение электронных оболочек атомов элементов первых четырех периодов: s-, p- и d-элементы. Электронная конфигурация атомов и ионов. Основное и возбужденное состояние атомов.

Одну из первых моделей строения атома — « пудинговую модель » — разработал Д.Д. Томсон в 1904 году. Томсон открыл существование электронов, за что и получил Нобелевскую премию. Однако наука на тот момент не могла объяснить существование этих самых электронов в пространстве. Томсон предположил, что атом состоит из отрицательных электронов, помещенных в равномерно заряженный положительно «суп», который компенсирует заряд электронов (еще одна аналогия — изюм в пудинге). Модель, конечно, оригинальная, но неверная. Зато модель Томсона стала отличным стартом для дальнейших работ в этой области.

И дальнейшая работа оказалась эффективной. Ученик Томсона, Эрнест Резерфорд, на основании опытов по рассеянию альфа-частиц на золотой фольге предложил новую, планетарную модель строения атома.

Согласно модели Резерфорда, атом состоит из массивного, положительно заряженного ядра и частиц с небольшой массой — электронов, которые, как планеты вокруг Солнца, летают вокруг ядра, и на него не падают.

Модель Резерфорда оказалась следующим шагом в изучении строения атома. Однако современная наука использует более совершенную модель, предложенную Нильсом Бором в 1913 году. На ней мы и остановимся подробнее.

Атом — это мельчайшая, электронейтральная, химически неделимая частица вещества, состоящая из положительно заряженного ядра и отрицательно заряженной электронной оболочки.

При этом электроны двигаются не по определенной орбите, как предполагал Резерфорд, а довольно хаотично. Совокупность электронов, которые двигаются вокруг ядра, называется электронной оболочкой .

А томное ядро, как доказал Резерфорд — массивное и положительно заряженное, расположено в центральной части атома. Структура ядра довольно сложна, и изучается в ядерной физике. Основные частицы, из которых оно состоит — протоны и нейтроны . Они связаны ядерными силами (сильное взаимодействие).

Рассмотрим основные характеристики протонов, нейтронов и электронов:

Протон Нейтрон Электрон
Масса 1,00728 а.е.м. 1,00867 а.е.м. 1/1960 а.е.м.
Заряд + 1 элементарный заряд — 1 элементарный заряд

1 а.е.м. (атомная единица массы) = 1,66054·10 -27 кг

1 элементарный заряд = 1,60219·10 -19 Кл

И — самое главное. Периодическая система химических элементов, структурированная Дмитрием Ивановичем Менделеевым, подчиняется простой и понятной логике: номер атома — это число протонов в ядре этого атома . Причем ни о каких протонах Дмитрий Иванович в XIX веке не слышал. Тем гениальнее его открытие и способности, и научное чутье, которое позволило перешагнуть на полтора столетия вперёд в науке.

Следовательно, заряд ядра Z равен числу протонов, т.е. номеру атома в Периодической системе химических элементов.

Атом — это на заряженная частица, следовательно, число протонов равно числу электронов: Ne = Np = Z.

Масса атома ( массовое число A ) равна суммарной массе крупных частиц, которе входят в состав атома — протонов и нейтронов. Поскольку масса протона и нетрона примерно равна 1 атомной единице массы, можно использовать формулу: M = Np + Nn

Массовое число указано в Периодической системе химических элементов в ячейке каждого элемента.

Обратите внимание! При решении задач ЕГЭ массовое число всех атомов, кроме хлора, округляется до целого по правилам математики. Массовое число атома хлора в ЕГЭ принято считать равным 35,5

Таким образом, рассчитать число нейтронов в атоме можно, вычтя из массового числа номер атома: Nn = M – Z.

В Периодической системе собраны химические элементы — атомы с одинаковым зарядом ядра. Однако, может ли меняться у этих атомов число остальных частиц? Вполне. Например, атомы с разным числом нейтронов называют изотопами данного химического элемента. У одного и того же элемента может быть несколько изотопов.

Попробуйте ответить на вопросы. Ответы на них — в конце статьи:

  1. У изотопов одного элемента массовое число одинаковое или разное?
  2. У изотопов одно элемента число протонов одинаковое или разное?

Химические свойства атомов определяются строением электронной оболочки и зарядом ядра. Таким образом, химические свойства изотопов одного элемента практически не отличаются.

Поскольку атомы одного элемента могут существовать в форме разных изотопов, в названии часто указывается массовое число, например, хлор-35, и принята такая форма записи атомов:

3. Определите количество нейтронов, протонов и электронов в изотопе брома-81.

4. Определите число нейтронов в изотопе хлора-37.