Атомные электростанции

Принцип работы АЭС

Основным продуктом на выходе из электростанций, работающим на ядерных видах топлива, является электроэнергия. Следуя концепции безопасности и последовательности получения необходимого ресурса, генеральный процесс включает три этапа преобразования:

  • Цепная ядерная реакция с обильным выделением тепла;
  • Тепловая энергия преобразуется в механическую;
  • Механическая генерирует электрическую.

При цепной реакции происходит сильный разогрев ближайшего теплоносителя – воды, которая на время откачивается от стенок реактора (из первого контура во второй) для получения пара. Последний вид энергии под давлением и за счет разности давлений начинает активно вращать турбину, которая находится в жесткой сцепке с электрическим генератором. Существует проблематика охлаждения воды в контурах реактора, для этого применяется система градирен или используются ближайшие водоемы.

Учитывая негативную практику аварий, в настоящее время на современных АЭС большое внимание уделяется функционированию защитных систем: локальных, обеспечивающих и управляющих. Генеральная концепция состоит в строго дозированной подаче ядерного топлива внутрь реактора

Топливо в активной зоне реактора

В центральной части реактора непосредственно применяется ядерное топливо на атомных электростанциях. Здесь осуществляется управление взаимодействием изотопов или делением атомов. Обычно такие установки работают на смеси веществ с массами U-235 и U-238. Ведущей характеристикой загрузки является исходная концентрация урана, которая напрямую зависит от типа используемой установки.

Непосредственно внутри реактора активные вещества находятся в виде топливных композиций, заключаются в надежную герметичную оболочку, образуют ТВЭЛ.

ТВС после атомной станции

Тепловыделяющие сборки по завершению жизненного цикла или выгорания подлежат извлечению. После этого облученный уран уходит на выдержку, затем на переработку или захоронение.

В России и ряде других стран соблюдается концепция замкнутого топливного цикла. При таком подходе ядерное топливо продолжает существовать в природе, образуя вокруг себя умеренный радиационный фон. Например, из отработанного урана можно получать плутоний, который используется в дальнейшем для производства инновационных видов топлива.

Где захоранивают ядерное топливо

Надо понимать, что отходы атомной промышленности, которые имеют высокую радиоактивность и уже никому не нужны, надо захоранивать так, чтобы они надежно пролежали в своем ”домике” тысячи и даже десятки тысяч лет. Ученые уже давно пришли к тому, что самыми надежными местами для этого являются скальные породы на большой глубине.

Вообще хранение в скальных породах является очень перспективным и обеспечивает те самые десятки тысяч лет надежной консервации. Сама Земля помогает в этом, а что в рамках нашего мира может быть более вечным, чем ее твердь? Поэтому нужны именно скалы. Например, в США идут активные дебаты по поводу строительства в пустыне Невады могильника Юкка-Маунтин. Оно должно уйти на сотни метров в вулканический горный хребет. Даже Швеция, одна из самых экологичных стран, рассматривает варианты захоронения внутри скальных оснований. Да и Финляндия уже с 2015 года практикует такое и продолжает расширять полезный объем хранилищ. Получается, что в этом нет ничего страшного? Получается, так.

В качестве временных могильников в экстренных случаях используются рукотворные репозитории. Для них готовятся толстые бетонные основания. В эти бассейны помещаются радиоактивные отходы, после чего сверху заливаются еще несколькими слоями бетона. Иногда еще в качестве дополнительной меры безопасности применяется заливка расплавленным боросиликатным стеклом. Так консервация будет еще более надежной, но все равно такой способ применяется больше как крайняя мера, так как скалы куда более постоянная вещь. Они были за миллион лет до нас, будут и через миллион лет после нас, а как поведет себя бетон через 100 лет, мы можем только гадать. Простите, прогнозировать.

Так выглядит один из вариантов бетонного хранилища.

Например, такие могильники есть в Чернобыле, где просто нет смысла вывозить тонны земли и прочего мусора. Для того, чтобы загрязнение было хотя бы немного меньше, особо опасные отходы собираются в такие могильники, оборудованные непосредственно на месте.

Не так давно у нас в Telegram-чате очень горячо обсуждали тему захоронения отходов в космосе. В принципе эта идея очень неплохая. Достаточно запустить контейнеры с отходами в сторону Солнца или в догонку за Вояджерами и проблема решена, но ценник таких работ будет просто космическим. Возможно, когда-то на новом этапе развития технологий, примерно через 1000-1500 лет наши потомки смогут найти способ дешевого вывода на орбиту и тогда отправят весь наш мусор из могильников куда подальше.

Производство ядерного топлива

Изготовление альтернативного энергоносителя в Российской Федерации находится в ведении государственной корпорации «Росатом». Отечественная компания ТВЭЛ выпускает известные виды ядерного топлива, разрабатывает и создает тепловыделяющие сборки, включая комплектующие, обслуживает действующие реакторы. Для сравнения продуктивности урана для энергетики можно привести простой пример: 630 граммов урана равнозначны по выдаче 70 тоннам угля или 140 тоннам дров. При этом соотношение отходов после отработки вторичных реакций составляет соответственно 126 граммов с равнозначными 74 тоннами золы и газов или 1.5 тонны золы, остающейся при сжигании древесины.

В современных условиях обогащение того, что содержит ядерное топливо, начинается в непосредственной близости от шахты. Первичная обработка представляет собой сортировку сырья, отделение нерудных компонентов, выделение максимально чистого вещества. Непосредственно технологический процесс основывается на том, что частицы урана достаточно инертны. По этой причине приведение в активное движение исходного состава для ядерного топлива способствует структурированию и выделение вещества в отдельную субстанцию. В зависимости от производства и качества сырья выделяют электромагнитный, аэродинамический методы производства. Долгое время в промышленности используется газовое центрифугование как самый передовой и эффективный метод обогащения урана. Кроме того, этот способ остается одним из самых экономически выгодных. В числе перспективных технологий получения чистого химического элемента для АЭС разделение изотопов при помощи лазера.

Мощности производств в мире (по состоянию на 2020 год, в EPP):

  • ТВЭЛ – Россия, свыше 28000;
  • URENCO – совместный проект Англии, Голландии и Германии – свыше 14000;
  • Китай и Франция – свыше 7000;
  • США лишь на 5 месте, свыше 4000.

Регенерация

При работе ядерного реактора топливо выгорает не полностью, имеет место процесс воспроизводства отдельных изотопов (Pu). В связи с этим отработанные ТВЭЛы направляют на переработку для регенерации топлива и повторного его использования.

В настоящее время для этих целей наиболее широко применяется пьюрекс-процесс, суть которого состоит в следующем: ТВЭЛы разрезают на части и растворяют в азотной кислоте, далее раствор очищают от продуктов деления и элементов оболочки, выделяют чистые соединения U и Pu. Затем полученный диоксид плутония PuO2 направляют на изготовление новых сердечников, а уран либо на изготовление сердечников, либо на обогащение 235U.

Переработка и регенерация высокорадиоактивных веществ — сложный и дорогостоящий процесс. ТВЭЛы после извлечения из реакторов проходят выдержку в течение нескольких лет (обычно 3—6) в специальных хранилищах. Трудности вызывает также переработка и захоронение отходов, непригодных к регенерации. Стоимость всех этих мер оказывает существенное влияние на экономическую эффективность атомных электростанций.

Научные разработки в сфере атомной энергетики

Конечно, имеются недостатки и опасения, но при этом атомная энергия представляется самой перспективной.

Альтернативные способы получения энергии, за счёт энергии приливов, ветра, Солнца, геотермальных источников и др. в настоящее время имеют не высокий уровнем получаемой энергии, и её низкой концентрацией.

Необходимые виды получения энергии, имеют индивидуальные риски для экологии и туризма, например производство фотоэлектрических элементов, которое загрязняет окружающую среду, опасность ветряных станций для птиц, изменение динамики волн.

Ученые разрабатывают международные проекты ядерных реакторов нового поколения, например ГТ-МГР, которые позволят повысить безопасность и увеличить КПД АЭС.

Россия начала строительство первой в мире плавающей АЭС, она позволяет решить проблему нехватки энергии в отдалённых прибрежных районах страны.

США и Япония ведут разработки мини-АЭС, с мощностью порядка 10-20 МВт для целей тепло и электроснабжения отдельных производств, жилых комплексов, а в перспективе — и индивидуальных домов.

Уменьшение мощности установки предполагает рост масштабов производства. Малогабаритные реакторы создаются с использованием безопасных технологий, многократно уменьшающих возможность утечки ядерного вещества.

Производство водорода

Правительством США принята Атомная водородная инициатива. Совместно с Южной Кореей ведутся работы по созданию атомных реакторов нового поколения, способных производить в больших количествах водород.

INEEL (Idaho National Engineering Environmental Laboratory) прогнозирует, что один энергоблок атомной электростанции следующего поколения, будет производить ежедневно водород, эквивалентный 750000 литров бензина.

Финансируются исследования возможностей производства водорода на существующих атомных электростанциях.

Термоядерная энергетика

Ещё более интересной, хотя и относительно отдалённой перспективой выглядит использование энергии ядерного синтеза.

Термоядерные реакторы, по расчётам, будут потреблять меньше топлива на единицу энергии, и как само это топливо (дейтерий, литий, гелий-3), так и продукты их синтеза нерадиоактивны и, следовательно, экологически безопасны.

В настоящее время при участии России, на юге Франции ведётся строительство международного экспериментального термоядерного реактора ITER.

Что делают с радиоактивными отходами

Есть несколько способов решить дальнейшую проблему радиоактивных отходов. К основным относятся переработка, хранение и захоронение. Иногда прибегают к комбинированным способам, которые можно применять в любом сочетании, если это позволит добиться правильного результата.

В таких стержнях в реакторы загружают атомное топливо. Потом с ним надо что-то делать.

Прежде всего, перед началом работ производится сбор отходов с предприятий, которые работают с соответствующими материалами.

Отходы перевозятся на заводы в специальных контейнерах, который могут быть стальными, свинцовыми, железобетонными, из обогащенного бором полиэтилена и другими. Все отходы перевозятся со строгим соблюдением норм безопасности, а большие партии даже в сопровождении конвоев.

Так радиоактивные отходы транспортируют по железной дороге.

Плутоний

Плутоний считается низкоплавким металлом. Он плавится при температуре 640°С. Из-за плохих пластических свойств он практически не поддается механической обработке. Токсичность вещества усложняет технологию изготовления ТВЭЛов. В атомной промышленности неоднократно предпринимались попытки использования плутония и его соединений, однако они не увенчались успехом. Использовать топливо для атомных электростанций, содержащее плутоний, нецелесообразно из-за примерно 2-кратного уменьшения периода разгона, на что не рассчитаны стандартные системы управления реакторами.

Для изготовления ядерного топлива, как правило, используют диоксид плутония, сплавы плутония с минералами, а также смесь карбидов плутония с карбидами урана. Высокими механическими свойствами и теплопроводностью обладают дисперсионные топлива, в которые частицы соединений урана и плутония размещаются в металлической матрице из молибдена, алюминия, нержавеющей стали и прочих металлов. От материала матрицы зависит радиационная стойкость и теплопроводность дисперсионного топлива. К примеру, на первой АЭС дисперсионное топливо состояло из частиц уранового сплава с 9% молибдена, которые были залиты молибденом.

Что касается ториевого топлива, то оно на сегодня не используется в силу трудностей производства и переработки ТВЭЛов.

Габонская аномалия

В 1972 году в рамках развития собственной ядерной программы Франция закупала у Габона (своей бывшей колонии) урановую руду. Естественно, для военных целей французам требовался, прежде всего, дефицитный изотоп 235U, содержание которого в природе хорошо известно: 0,720%. А в образцах из Окло 235U было явственно меньше: 0,717%. Столь аптекарская, но четкая разница вынудила французов подробнее изучить геологическое строение Окло и выявила еще более интересные изотопные аномалии. В руде оказалось повышено содержание изотопов неодима (143Nd и 144Nd), а также понижено содержание изотопов европия и самария.

Наиболее логичный вывод заключался в том, что часть 235U в залежах Окло подверглась распаду уже после их формирования. Более того, изотопный состав выдавал осколки от распада плутония: к 1972 году распад плутония уже был хорошо изучен, но в естественных горных породах этот элемент найден не был. Плутоний-239 образуется в процессе ядерной реакции, начинающейся с попадания нейтрона в атом урана-238:

Рис. 2

Сам бассейн оказался очень древним, докембрийским. Возраст его составляет 1,8 миллиарда лет. В тот период, когда он формировался, содержание 235U в земной коре было гораздо выше и вполне могло составлять те 3%, при которых в Окло на протяжении нескольких сотен тысяч лет поддерживалась ядерная реакция.      

Общие сведения

Топливом для атомных станций чаще всего становятся уран или плутоний. Их жизненный цикл начинается в добывающих карьерах, химических комбинатах. При этом этот цикл довольно длинный, так как не заканчивается на этапе забора из реактора отработанной части, после этого еще следует утилизация и переработка.

Добыча ресурсов для получения ядерного топлива

Добыча урана сегодня осуществляется тремя основными методами:

  • Открытый способ. Чаще всего его используют там, где запасы металла расположены довольно близко к поверхности земли. Для добычи на месте обнаружения залежей металла создается карьер, затем добывается руда, которая далее на самосвалах транспортируется для переработки на соответствующие заводы.
  • Подземный способ. Этот метод используют, если залежи металла расположились на большой глубине. Для добычи ресурса взрывается шахта, глубина которой может быть до 2 километров. Руду добывают путем сверления породы, затем в грузовых лифтах транспортируют на поверхность. В руде, добытой таким способом, содержится большое количество составляющих. Для очистки порода измельчается, разбавляется водой и лишние примеси выводятся. Далее в полученную смесь добавляется серная кислота, которая запускает процесс выщелачивания. Эта химическая реакции приводит к тому, что соли урана выпадают в осадок желтого цвета. Далее урановый осадок проходит очистку на аффинажном производстве. Только после этого получается та самая закись-окись урана, которая пригодна для продажи и получения из него топлива.
  • Скважинное подземное выщелачивание. Это самый безопасный, экологичный и экономически выгодны способ добычи урана. Этот метод добычи урана сохраняет безопасность территории месторождения для персонала, не приводит к увеличению радиационного фона. Для того, чтобы добыть урана с помощью скважинного подземного выщелачивания прорубается 6 скважин по углам шестиугольника на месторождении. Через эти скважины в залежи породы закачивается серная кислота, где она смешивается с солями урана. Получившийся раствор выкачивают через центральную скважину. Далее эта смесь несколько раз проходит через сорбирующие колонны, чтобы прийти к нужной концентрации солей урана.

Производство ядерного топлива

Начинается производство ядерного топлива в газовых центрифугах, где происходит обогащение урана. После того, как будет получена необходимая концентрация вещества, из диоксида урана формируются так называемые таблетки. Создаются таблетки с помощью смазочных материалов, которые выделяются в процессе обжига в печах при температуре порядка 1000 градусов. Далее полученные таблетки проходят сертификацию, они должны соответствовать определенным критериям качества поверхности, процентному содержанию влаги, а так же определенному соотношению урана и кислорода.

Параллельно в соседнем цеху происходит изготовление трубчатых оболочек для тепловыделяющих элементов. Далее таблетки упаковываются в оболочные трубки из стали, циркония и других металлов, герметизируются, деактивируются. Готовая трубка с топливом внутри называется тепловыделяющим элементов или сокращенно ТВЭЛ.  Весь этот процесс называется фабрикацией топлива. В России такие процессы выполняются на Московском заводе полимеров, на Московском машиностроительном заводе, на Новосибирском заводе химконцентратов и на некоторых других.

Каждая партия таких ТВЭЛ создается под конкретный тип реактора. Так. Европейские таблетки имеют форму квадрата, Российские – форму шестиугольника. Кроме того, они могут отличать и длинной трубки и формой. ТВЭЛ могут быть пластинчатыми, кольцевыми и любой другой формы. ТВЭЛы объединяют в тепловыделяющие сборки (ТВС)

Ядерный топливный цикл

Ядерный топливный цикл состоит из следующих этапов:

  • до цикла (добыча природного урана, конверсия, обогащение, изготовление топлива);
  • облучение в реакторе;
  • после цикла (промежуточное хранение облученного топлива, обработка облученного топлива, хранение радиоактивных отходов и отработавшего топлива, захоронение);
  • перевозка ядерного топлива и радиоактивных материалов.

Облученное ядерное топливо

Основные элементы, содержащиеся в облученном ядерном топливе (в кг / тонну топлива PWR 1300, после 3 лет охлаждения)

Уран  : 935,548  кг с обогащением около 1%

Актиниды Масса (кг)
нептуний 0,43
плутоний 10
америций 0,38
кюрий 0,042

Реактор EPFL CROCUS .

Продукты деления Масса (кг) Продукты деления Масса (кг)
Kr , Xe 6.0 Tc 0,23
Cs , Rb 3.1 Ru , Rh , Pd 0,86
Sr , Ba 2,5 Ag , Cd , In , Sn , Sb 0,25
Y , La 1,7 Этот 2,5
Zr 3,7 Pr 1.2
Se , Te 0,56 Nd 4.2
Пн 3.5 См 0,82
я 0,23 Имел 0,15

Цикл вниз по потоку

В некоторых секторах реакторов, включая реакторы с водой под давлением и реакторы с кипящей водой (наиболее распространенные), отработанное топливо может быть переработано, что позволяет отделить компоненты, которые могут быть восстановлены для нового использования, от тех, которые не могут быть использованы. окончательные ядерные отходы , кондиционируя последние в более стабильной физико-химической форме и более подходящей для хранения или захоронения ( на поверхности или в глубине ).

В современных реакторах с водой под давлением (типа Westinghouse ) среднее время пребывания топливных стержней составляет 4,5 года. По окончании этого периода на одну тонну топлива остается:

  • 930 кг обедненного урана  ;
  • 56,6 кг продуктов деления  ;
  • из минорных актиноидов  :
    • 12 кг плутония;
    • 1 кг нептуния  ;
    • 0,8 кг америция  ;
    • 0,6 кг кюрия .

Если плутоний можно использовать повторно, другие второстепенные актиниды остекловываются и хранятся. Для того, чтобы их радиотоксичность снизилась до уровня урана, требуется от 300 000 до 1 миллиона лет . Цель трансмутации — превратить их в гораздо менее радиотоксичные виды. Например, проект MYRRHA позволит сжигать стержни, состоящие на 50% из этих актинидов. После трансмутации их радиотоксичность присоединится к урану всего через 300 лет.

Цирконий оболочка , окружающее топливо и внутренние структуры ТВС не переработаны и являются частью долгоживущих отходов.

Получение

Производство ядерного топлива из урановой руды включает в себя такие стадии, как:

  1. Гидрометаллургическая переработка. Включает в себя выщелачивание, дробление и экстракционное или сорбционное извлечение. Результатом гидрометаллургической переработки является очищенная взвесь закиси оксиурана, диураната натрия или диураната аммония.
  2. Перевод вещества из оксида в тетрафторид или гексафторид, используемый для обогащения урана-235.
  3. Обогащение вещества путем центрифугирования или газовой термодиффузии.
  4. Перевод обогащенного материала в диоксид, из которого производят «таблетки» ТВЭЛов.

Выбросы в атмосферу через трубу АЭС

Наверное, самое большое число слухов и домыслов ходят вокруг выбросов атомных станций. Выбросы действительно есть и происходят они, в основном, через вентиляционные трубы — это те самые трубы, которые стоят возле каждого энергоблока и никогда не дымят. По большей части, в атмосферу попадают инертные радиоактивные газы — ксенон, криптон и аргон. Но перед сбросом в атмосферу воздух из помещений АЭС проходит систему сложных фильтров, где удаляется большая часть радионуклидов. Короткоживущие изотопы распадаются еще до того, как газы достигнут верха трубы, еще больше снижая радиоактивность. В итоге, вклад в естественный радиационный фон газоаэрозольных выбросов АЭС в атмосферу незначителен и им вообще можно пренебречь. Поэтому атомная энергия является одной из самых чистых, в сравнении с другими электростанциями. В любом случае, все радиоактивные выбросы атомных станций строго контролируются экологами и разрабатываются способы дальнейшего их снижения.

Ленинградская АЭС. Первые РБМК

Теперь перейдем к самым крупным АЭС, с серийными блоками гигаваттной мощности. Начнем по хронологии и с реакторов РБМК.

Ленинградаская АЭС и ее энергоблоки. Графика автора

Именно на реакторах РБМК СССР планировал масштабно развивать атомную энергетику в 1970-е годы для удовлетворения энергодефицита в европейской части страны, поскольку технологию изготовления корпусов гигаваттных ВВЭР осваивать не успевал. А активная зона реактора РБМК собирается как из кубиков, изготовление компонентов для нее было освоено промышленностью. Поэтому, например, ее можно масштабировать и увеличивать. Например, на Игналинской АЭС построили два РБМК мощностью уже 1500 МВт, хотя и в тех же габаритах. Но были проекты и с увеличенной мощностью и активной зоной, до 2400 МВт. Вообще, сам реактор РБМК-1000  — это один из крупнейших в мире реакторов, там только диаметр активной зоны более 11 м.

Верхняя плита реактора РБМК — одного из самых больших реакторов в мире

У РБМК есть ряд преимуществ перед ВВЭР. Например, он не требует остановки для перегрузки топлива, его можно перегружать, отключая отдельные каналы прямо на работающем реакторе.  Из-за этого он позволяет облучать в каналах отдельные сборки-мишени и нарабатывать полезные изотопы, как, например, Co-60, который сейчас и производят на Ленинградской АЭС.

Но есть и ряд недостатков. Это, например, и сложность управления, и отсутствие защитной оболочки-контейнмента, и другие недостатки конструкции, которые не были своевременно устранены из-за гонки масштабного строительства АЭС в СССР в 1970-е и 1980-е. Все это привело к главной трагедии, сделавшей реактор РБМК печально известным на весь мир – Чернобыльской катастрофе. Именно такие реакторы были на этой АЭС. После аварии 1986-года реакторы РБМК доработали и модернизировали, устранив большинство недостатков. Поэтому сегодняшние РБМК все же существенно отличаются от дочернобыльских.

Два энергоблока с ВВЭР-1200 на Ленингрдаской АЭС-2. Один уже сдан (справа), второй строится.

Два энергоблока первой очереди Ленинградской АЭС заработали в 1973 и 1975 годах, они уже отработали по 45 лет и остановлены в 2018 и 2020 годах. Им на смену были построены и синхронно с отключением старых блоков были подключены два новых энергоблока с реакторами ВВЭР-1200. Так что теперь Ленинградская АЭС – единственная российская, где одновременно работают реакторы разных типов – РБМК-1000 и ВВЭР-1200. Кстати, при этом мощность АЭС выросла на 400 МВт, и теперь это самая мощная АЭС России. Сейчас ЛАЭС обеспечивает электроэнергией Ленинградскую область более чем на 50%, а также частично снабжает теплом ближайший город атомщиков — Сосновый бор.

Мне дважды доводилось бывать на ЛАЭС-2, поэтому я видел новые энергоблоки и в строящемся виде, и тут же впервые побывал на уже работающем энергоблоке с ВВЭР-1200. 

Почему ядерное топливо закапывают, а не уничтожают


Надо понимать, что технологии сейчас и технологии через 50-100 и более лет находятся на совершенно разном уровне. Исходя из этого, есть смысл сейчас не заниматься дорогущей глубокой переработкой радиоактивных отходов. Полностью их вычистить все равно не получится, но зато через десятки и сотни лет промышленности могут понадобиться редкие изотопы, которые люди будущего смогут найти в тех самых хранилищах и могильниках, что мы строим сейчас.

Так захоронили технику в Чернобыле после ликвидации последствий аварии. Вот только минус был в том, что многое растащили на запчасти и теперь зараженные машины ездят по городам.

Также есть возможность того, что в будущем технологии достигнут нового уровня и то, что мы сейчас просто не можем переработать, будет достаточно облить из ведра (конечно, утрировано) и все станет нормально. Пока ученые делают все, что могут, но захоронение и переработка находятся в балансе, а не в стремлении любой ценой переработать как можно больше отходов.